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a b s t r a c t

Thiswork proposes an improved particle swarmoptimization (PSO)method to increase the
measurement precision of multi-sensors data fusion in the Internet of Things (IOT) system.
Critical IOT technologies consist of a wireless sensor network, RFID, various sensors and
an embedded system. For multi-sensor data fusion computing systems, data aggregation
is a main concern and can be formulated as a multiple dimensional based on particle
swarm optimization approaches. The proposed improved PSO method can locate the
minimizing solution to the objective cost function in multiple dimensional assignment
themes, which are considered in particle swarm initiation, cross rules and mutation rules.
The optimum seclusion can be searched for efficiently with respect to reducing the search
range through validated candidate measures. Experimental results demonstrate that the
proposed improved PSO method for multi-sensor data fusion is highly feasible for IOT
system applications.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Internet of Things (IOT) installs various sensors in each physical device in a network system. These elements include radio
frequency identification (RFID), global positioning system (GPS), and wireless sensors network (WSN) technology [1]. The
sensors are linked via the Internet or are wireless. Using remote control allows the sensors elements to communicate with
individuals. IOT generally uses a wireless sensor network that features a comprehensive perception, with a reliable delivery
up to the handle. IOT can easily monitor the location of supplies and equipment to achieve identification and transparent
management of items,with positive control and anti-theft features. IOT applications can be found inmedical, transportation,
services, home, factories, and cities, reflecting the broad commercial applications for this technology [2].

In an IOT system, multi-sensor data fusion issues such as node signal processing, WSN localization, anti-collision and
information-aggregation are often formulated as optimization subjects. Based on improved particle swarm optimization
(PSO), this work attempts to comply with the moderate memory and computational resources requirements, while
producing acceptable results for implementation on an individual sensor node. As a swarm based intelligence optimization
approach, PSO addresses optimization topics by simulating the social behavior of bird flocks. PSO is a conventionally adopted
multi-dimensional optimization procedure. Ease of implementation, high solution quality, computational efficiency and
speed of convergence are the strengths of PSO [3]. PSO applications inmulti-sensor data fusion are abundant in the literature.
Based on improved PSO, thiswork increases themeasurement radio effect precision for data fusion in IOT system computing.

Extensively adopted in the optimization field, PSO is amathematical basis for solving a variety ofmulti-sensor data fusion
problems to optimize the solution approach. Inspired by the foraging behavior of birds, Kennedy and Eberhar created the PSO
algorithm in 1995. Following several experimental studies, Angeline found that the PSO algorithm can solve typical function
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optimization problems. A promising area includes multi-objective optimization problems, system design, classification,
pattern recognition, biological systems planning modeling, signal processing, decision-making and simulation. Successful
applications include fuzzy controller design, shop scheduling, real-time robot path planning, image segmentation, EEG signal
simulation, speech recognition, diagnosis and detection of moving target’s burns [4].

Based on ZigBee technology, the IOT system establishes a measurement environment among various sensor nodes.
ZigBee is an inexpensive, low power consuming, low transmission rate, short-rangewireless transmission system. Generally
defined in the IEEE 802.15.4 protocol standard, which also belongs to the IEEE 802.15.4 standard, this system separately
defines themedium access control layer (MAC) and physical layer (PHY) as the underlying system [5]. The IOT system based
on a ZigBee sensor network is widely anticipated to be extensively used in smart homes, medical care, factory monitoring,
and environmental control. A promising solution to this challenge is to employ the IPSO on themulti-sensors data fusion for
IOT precise measurement. Through the improved PSOmethod, the measurement sensor results confirm themulti-objective
expression data association problem for a class of combinatorial optimization problems to solve constraints. This approach
is quite reasonable in some sensor elements in which the sensor’s measurement result is derived from the applied data
fusion and control theory. In the IOT system experimental analysis that we proposed, an improved PSO algorithm allows for
more accurate measurement results in the number of multiple wireless sensors.

2. Literature survey

Owing to faster convergence rates, the particle swarm optimization-based genetic algorithm is simple, easy to
understand, easy to implement, and often easier than the genetic algorithm (GA). Although more efficient, this algorithm
fails to deal effectively with high dimensional problems [6]. The PSO algorithm is likely to degrade in several local minimum
points. Many attempts have been made to enhance PSO algorithm performance, (further details can be found in [7–9]).
Shi (1998) developed an adaptive inertia factor for the particle swarm optimization algorithm. Shi (2001) further proposed
using the fuzzy rules algorithm to dynamicallymodify the inertia factor.While drawing on the concept of genetic algorithms,
Angeline (1998) proposed a particle swarmoptimization algorithmhybrid. Lovbjerg (2001) further proposed particle swarm
optimization breeding [10]. Vanden Bergh (2001) proposed particle swarm optimization algorithm collaboration with the
notion of using particles of K independent groups in the D-dimensional target-space dimension in different directions to
search global optimization. Kennedy (1997) designed a discrete binary version of the particle swarmoptimization algorithm.
Clerc (2000) applied a PSO algorithm to the traveling salesman problem (TSP) and achieved satisfactory results [11]. Vanden
Bergh (2002) developed an effective approach to ensure fast PSO algorithm convergence. This strategy incorporates a new
global best particle update equation. The position equation of a particle is set to the global extreme point, making it near the
global best position to generate a random search, while other particles remain updated with the original equation. Based on
a Gaussian variation, Natsuki (2003) improved the ability of the proposed particle swarm optimization algorithm to jump
out of local convergence.

Many works have attempted to improve the PSO algorithm since 2000. Notable examples can be found in [12,13]. Xu
(2000) attempted to improve upon the fuzzy logic systemparticle swarmoptimization self-learning algorithm.Wang (2003)
adopted the standard PSO algorithm to increase the particle location update equation using the integral control idea. Integral
control of each particle’s fitness value determines the particle position changes, which can improve the ability to avoid local
minima. Gao (2004) examined the organism immune system. The immune system incorporates an immune information
processing mechanism into the PSO algorithm. The Harbin Institute of Technology developed a PSO algorithm based on
chaotic thinking in 2005, which used a fast convergence PSO algorithm and factors such as chaotic transport ergodicity
and randomness, to improve the standard PSO algorithm. Wu (2005) proposed a multi-objective optimization scheme to
derive the improved PSO algorithm by using information transmission of the PSO algorithm. Amulti-objective evolutionary
algorithm, commonly used in archiving technology is introduced using environmental selection of the SPEA2 algorithm and
matching options strategies, subsequently allowing the entire group to maintain an appropriate selection pressure in the
Pareto optimal solution set convergence [14,15].

3. IOT system architecture and development platform

Fig. 1 illustrates the experimental development of the IOT systemarchitecture. This study proposed a systemusing ZigBee
CC2530 and RFID to constitute the Internet of Things. The IOT system hardware consists of a main board and seven cell base
boards, as well as various sensors and RFID modules. The hardware components communicate with each other through
wireless transmission. Each node in the data collection is sent messages to the key points of things and, finally, by computer
display data and information processing. The battery plate can be viewed as a condensed version of themain board, by using
two 1.5 V batteries for the power supply. Consequently, the mobility is significantly enhanced. Moreover, the IOT system
can be used as a router or end device.

Fig. 1 shows the system architecture diagram of the key points of things, which is placed in the main board. The main
board interface has a 128×64 dotmatrix font files LCD, UART to USB interface, LED indicator, user buttons, and user I/O area.
In Fig. 1(b), the IOT experimental development platform uses three sensors: light, temperature and humidity, and a three-
axis sensor. The sensor is installed in the battery plate as sensor nodes. IOT experimental simulation includes sensormodule



1452 W.-T. Sung, M.-H. Tsai / Computers and Mathematics with Applications 64 (2012) 1450–1461

Fig. 1. (a) IOT system architecture. (b) Experimental simulation platform of IOT. (c) Debugger multi emulator.

and RIFD for integration. RFID tags have four frequency bands: 125 kHz LF RFID modules, 13.56 MHz HF RFID Module, 900
MHz UHF RFID Module, and 2.4 GHz RFID module [16].

Fig. 1(c) shows the development platform debugger multi-emulator device, SmartRF05EB the main floor and the floor
and the computer link SmartRF05BB battery. The device uses JATG Interface 10PIN flat wire transfer through the debugger
multi emulator after the USB interface. The computer is then connected to burn the compiled code and the node to themain
floor panels in order to complete the burn after the experiment can be simulated.

Fig. 2(a) shows the SmartRF05EB development platforms in the main board; the device belongs to the IOT things in the
ZigBee network coordinator. Interface with a 128× 64 dot matrix font files LCD, UART to USB interface, LED indicator, user
buttons, user I/O area and other rich features. The SmartRF05EB main floor houses three power supplies: the DC interface
power supply, USB interface power supply and battery-powered. A debuggermulti emulator uses a USB interface connected
to a computer. The code is developed after burning to the main backplane. The star network, tree network, and mesh
networking are supported by ZigBee protocol. Themain floor can also be connected to a sensormodule and the RFIDmodule,
in which the user can be based on different needs, which is an additional expansion.

Fig. 2(b) shows the Development Platform SmartRF05BB battery plate. SmartRF05EB on the main floor with functions
in SmartRF05BB battery also has a main floor in the bottom part of the function. The battery plate can be regarded as a
condensed version of the main floor. The main floor of the LCD and USB serial interface switch simplification enhances
mobile battery-powered performance. Following the installation of the CC2530EM battery plate, all ZigBee networks can be
used as a router or end device. CC2530EM has a CC2530 chip and a 32 MHz oscillator, capable of receiving various sensor
data types and RFID modules, transmitted by the antenna back to the computer through the main floor display processing.
Fig. 3 shows various sensor types and RFID modules [17].

4. Improved PSO algorithm

In the multi-sensor data fusion system, data aggregation is based on a common source of a similar nature. Certain
allocation strategies are grouped intomulti-sensor observations. The correlation is evenmore complex owing to false alarms
and missed uncertainty processes such as an observation. Solutions for these complex issues are the nearest neighbor
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Fig. 2. (a) SmartRF05EB main board. (b) SmartRF05BB battery plate.

Fig. 3. Various sensor types and RFID modules.

method and probabilistic data association algorithm, which many works assume are algorithm and multi-dimensional
assignment algorithm. This work presents a novel PSO algorithm to solve a multi-dimensional distribution problem.
Measurement sensor results confirm the multi-objective expression data association problem for a class of combinatorial
optimization problems to solve constraints. Its particle encoding, initialization, crossover and mutation development
strategies achieve a more intensive environment of clutter and dense multi-target data association, after the last associated
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fusion measurement with satisfactory results. Simulation results demonstrate the superiority of this algorithm in optimum
fitness and data fusion error probability [18].

Assume that there are Ns sensors from the surveillance area scan measurements of S, in which each sensor has a certain
number of measurements, but not necessarily equal to the actual number of targets. In the current problems S = Ns, in
which each sensor has a scan, a scan assumes that all sensors are functioning simultaneously. The purpose of the data is
associated with a measurement of S estimated target states.

By assuming amulti-sensor data fusion environment, the target state equation andmeasurement equation are as follows:

X (k+1)
i = Φ(k+ 1|k)Xi(k)+ G(k)W (k) (1)

Zsis(k)

H(k)Xi(k)+ V (k)
Y (k). (2)

In Eq. (2), Zsis(k) measurements from the target i and clutter, where Xi(k) represents a target state vector i, Zsis(k) denotes
a sensor S measurements vector, W (k) and V (k) for the state noise and measurement noise respectively, are uncorrelated
Gaussian white noise sequences, the Φ(k + 1|k), G(k), and H(k) are state transition matrix, input matrix and observation
matrix, and Y (k) represents the observation area of a clutter. For each S-dimensional distribution associated with the S
at time k from the sequence of ns measurements, s = 1, 2, . . . , S. Assume that time k target i at real position is Xi(k),
Sensor s position is ys(k), i measurement of the target Zsis(k), is = 1, 2, . . . , n. The above measurements may be due to
either a real goal or a false target. The sensor provides the target at time k of the s-group to assign weights measured with
the s-dimensional assignment algorithm in order to minimize the overall power. To simplify the missed computing due
to incomplete measurements and interconnected goals, Zs0 virtual measurement is added to each sequence. Also, s in the
sequence is assigned to the target virtual measurement i; this goal has not been detected by sensor s. From the target for i,
kmoment time when the actual state xi(k), S-set of measurements Zi1 i2,...,is (the measure that Zi1Zi2 . . . Zis ) of the likelihood
probability (time omitted):

∧ (Zi1 i2···is |i) =
S

s=1

{[1− PDd ]
1−u(is)[PDsp(Zsis |xi)]

u(is)} (3)

where: u(is) refers to the indicator function, i.e.

u(is)

0 is = 0
1 other. (4)

Measurements are either false alarms or irrelevant to this target. The probability that the likelihood

∧ (Zi1 i2···is |i = Φ) =

S
s=1


1
Ψs

u(is)

(5)

where: Ψs represents the size of the sensor probe field (the area of two-dimensional, three-dimensional as the volume), i is
associated with the target S — the right group of log likelihood probability:

ci1 i2···is = − ln
∧(Zi1 i2···is |i)
∧(Zi1 i2···is |i = Φ)

. (6)

However, if Eq. (1) of Xi(k) is unknown, then by its maximum likelihood estimation rather than that:

x̂i = arg max
xi
∧(Zi1 i2···is |i). (7)

This allows Eq. (6) into the normalized likelihood ratio. Take the (3) and (7) into (6), S-group i1 , i2 , . . . , i3 and the target
measurement rights related to alternative,

ci1 i2···is =
s

s=1


[u(is)− 1] ln(1− PDs)− u(is) ln


PDsΨs

|2πRs|
1/2

+ u(is)
1
2
[Zsis − H(xi, yxis)]

TR−1s [Zsis − H(xi, yxis)]


. (8)

The above equation attempts to identify the S-group maximum likelihood set. Therefore, each measurement is assigned to
a goal and only one target, or judged as a false target and up to obtain each target in each sequence of a measurement. This
distribution of the S-dimensional is re-grouped into,

J∗ = min
ρi1 i2 ···is

n1
i1=0

n2
i2=0

· · ·

ns
is=0

ci1i2···isρi1i2···is . (9)
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Fig. 4. Schematic diagram of particle code for link list of multi-sensors data fusion.

Meet:

n2
i2=0

· · ·

ns
is=0

ρi1 i2···is = 1, i1 = 1 , 2, . . . , n1

n1
i1=0

n3
i3

· · ·

ns
is=0

ρi1 i2···is = 1, i2 = 1 , 2, . . . , n2

n1
i1=0

· · ·

ns−1
is−1=0

ρi1i2···is = 1, is = 1, 2, . . . , ns (10)

where: {ρi1 i2···is} denotes a binary dependent variable, making the S-group if Zi1i2···is is associated with an alternative target
which is ρi1 i2···is = 1, and 0 otherwise. Notably, the measurement does not only belong to the virtual target or clutter a
constraint; it can also be repeated [19,20].

The improved PSO algorithm simulates birds of prey behavior to solve the optimization problem. First, the solution space
is a random initialization of birds; birds of every known kind are used as the ‘‘particles’’. The ‘‘particles’’ are mobile in the
solution space. Following several iterations, the optimal solution is obtained. The particles perform data fusion computing
by using the two ‘‘extremes’’ to renew itself during the each iteration. The first one is the optimal solution of the particle
itself, p, the first two are present throughout the particle swarm to derive the optimal solution, g . While attempting to locate
these two extremes, each particle is based according to their flight speed, to determine their own direction and distance.

The speed of the improved PSO formula is derived as follows:

vt+1 = w0v0 + η1rand()(pt − xt)+ η2rand()(gt − xt) (11)
xt+1 = xt + vt+1 (12)

where vt represents the first step of the particle velocity vector t; xt refers to the t-th step of the position of the particle;
pt denotes the t-th step to find the particle location of the optimum solution itself; gt is the t-th steps population in which
the best solution is located; ω0 refers to inertia weight, η1, η2 for pt and gt in order to adjust the relative importance of the
parameters for the normal number, called the acceleration factor; rand () is [0, 1] random number. Generally the ω0 takes
(0, 1) random number; the η1 and η2 takes (0, 2) random number. If the IOT has S sensors, sensor s measurement of the
particles encoded is shown in Fig. 4:

The total length of particle n1 + n2 + · · · + ns−1 + 1, at k times the number of individual sensors and measurement,
where Z1i, Z2i, . . . , ZSi, which is assumed to be the same goal from the i-th sensor target to actual situation, is often missed
and false measurements exist. Therefore, sensor smisses the target with Zs0. By setting in particle number np, i.e. number of
iterations nmax, the overall algorithm execution is as follows:

(a) Initialize the particle swarm, with each particle assigned to a random initial solution and the exchange of random
probability and mutation probability calculation based on the current position of the particle fitness value. Also, set
the current value of the individual to adapt to extreme p, global extreme g , while the number of iterations t < provides
the number of iterations, the (b)–(f), when the system locates the optimum solution and the step is completed.

(b) q0 and p0 of the particle cross derive a new solution q′1.
(c) The new solution q′1 and g cross obtain a new solution q′′1 .
(d) Variation of q′′1 is q1.
(e) The fitness function calculation is based on the current solution, two positions due to changes in the amount of 1E

fitness function. If 1E < e (e is deteriorated by allowing the scope of the objective function), 1E ≤ 0, accept the new
value of q0 ← q; otherwise, reject the assumption that the particle is still q0.

(f) If the particle has less than the current optimal fitness function value, this particle is updated to the current best particle
p. If the particle has less than the global optimum fitness value, this particle is updated to the current best particle g .
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Fig. 5. (a) Communication interfaces. (b) Layout node.

5. Simulation and analysis results

The ZigBee CC2530 chip with RFID for IOT was used for the experimental simulation work. The program was compiled
using IAR EmbeddedWorkbench software and then coded. A development board through the JTAGDebuggermulti emulator
interface to the USB interface was connected to the computer. The code was then burned to the battery plate and sensing
element of each sensor node according to the node type burned with the appropriate code. The experimental simulation
environment is the general home environment. SmartRF05EB is the first development board via USB interface and the
computer communication interface connection. The communication interfacewas chosen on ZigBee, themotherboard using
a COM Port communication. The IOT system opens the sensor nodes and RFID module bottom of the battery power and
emission signals back to the development board. The board receives the signal from each node displayed on the computer
communication interface, as shown in Fig. 5(a).

The development board accumulates the sensor signals and RFID module. The communication interface displays the
list of sensor nodes. Each node is set to the home environment in each region. Fig. 5(b) displays the living room, balcony,
bedroom, study and door. The sensor node locations are determined using the free replacement demand. Sensor nodes can
also be installed in the equipment andmaterials during application. Following completion of each node, the communication
interface via the computer observes the status of the nodes.

During the simulation experiment, the sensor nodes in the living room set the brightness, sensing the living room
illumination is abnormal. If the light intensity is below the set value, the system automatically records the time that the
exception occurs. Fig. 6(a) shows the sensed data sent to the chart. The chart starts sensing changes in the light intensity
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Fig. 6. (a) Optical sensor data. (b) Temperature and humidity curves.

at 87%. However, if a hand or items obscure the light sensor, the sensor immediately reduces the data percentage. Therefore,
if the location of light sensors’ installation is correct, selecting a shelter in the place of interference is unnecessary, therefore,
the light sensor can sense ambient light.

Temperature and humidity sensor nodes are set in the master bedroom to sense the temperature and humidity. If the
temperature and humidity are below the set value and the control device maintains a comfortable indoor environment,
those values are corrected. Re-use development board temperature and humidity sensor nodes gather data to display the
communication interface graphically. Fig. 6(a) shows the changes in temperature and humidity nodes. Fig. 6(b) illustrates
changes in temperature andhumidity data in a normal sense tomaintain the initial temperature sensor at 26 °C andhumidity
sensor ratio at 45%. However, Fig. 6(b) shows a hair dryer or other items to maintain interference to make sense of data
that produced significant changes in temperature sensing temperature gradually from 26 to 35 °C, along with changes in
humidity from 45% to 50%.When human interference is stopped, the data is a period of time that quickly returns to a normal
temperature and humidity condition, and does not interfere with and reduce the sensing accuracy.

Simulation experiments are performed using three-axis sensor nodes to sense the balcony; the nodes can pick up an
empty balcony and these nodes are installed in the equipment and materials. X , Y , Z axis sensing equipment and materials
stability. The sensor data are then sent back to the development board. These sensors receive X , Y , Z axis tilt on the
development board. Fig. 7(a) shows the graph axis sensing in the communications interface. Our results clearly observe
the tilt position, with adjustments finally made for improvement of efficiency. Based on the X-axis movements, tilting the
sensor board to the right causes the X-axis values to rise, a tilt to the left decreases the X-axis value; the Y -axis values are the
same and the Z-axis tilt value is also affected. Y -axis movements of the sensor board tilt down, causing a drop in the Y -axis
values. Tilting up the Y -axis values causes a rise in weak sense environmental changes. The Z-axis value is also affected due
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Fig. 7. (a) Three-axis sensing graph. (b) RFID configuration interface.

to tilting up and down. Z-axis movements and horizontal values are 1.5 g; when the Z-axis in the vertical is at 90° and−90°,
the value is from the 1.5 g down to 0.5 g; when the Z-axis level of state is anti −180° and −180°, the value dropped by
1.5–0.5 g. Fig. 7(a) shows the tri-axis accelerometer with changes in the various environmental situations.

In addition to sensors, the experimental simulations involve four groups of RFID modules. Sensors on the IOT system
are set at the door, study and second bedroom, in which RFID 125 kHz LF RFID module contains the module, 13.56 MHz
HF RFID Module, 900 MHz UHF RFID Module, 2.4 GHz RFID. RFID cards, which are required to perform authorization via a
communication interface set. Fig. 7(b) illustrates the authority to set the interface, login using the name, job number, title,
and the datamessage as well. The user can then update the information and record the card reader to read the time, identity
and type.

This study illustrates the possible performance gains with the derived optimal multi-sensor precise measurement for
the data fusion allocation scheme. The fading coefficients Zs0 of the channel between the sensors and the fusion center are
assumed to be the total length of the particle n1 + n2 + · · · + ns−1 + 1 distributed with a unit mean (Fig. 8).

In the IOT system experimental analysis, this work assumes that ns is equal to 30, 80, 160, and 250 as the number of
multiplewireless sensors. According to Table 1,with a larger number of sensor signals, the proposed improvedPSOalgorithm
allows formore accuratemeasurement results (comparedwith the normalmode and the conventional PSO), especiallywhen
the experimental results are more obvious after ns > 160 [21,22].
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Fig. 8. Convergence of exterior penalty function based improved PSO: multi-sensor data fusion error probability is below 0.01%. (a) Optimum fitness
returned for improved PSO iterations for a given penalty parameter. (b) Convergence of penalty function to the original optimization problem. (c) PSO data
fusion error probability is improved when observations are correlated with each other (ns = 30; 1E = 0.1%, SNR= 20 dB).
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Table 1
Comparative analysis of calculated various initial populations and iterations in IOT experimental
(ns = 30, 80, 120, 160, 250, improved PSO algorithm (IPSO)).

ns Approaches Average error rate % Convergence % Iterations % Success %

30
Non-PSO <0.001 97.3 53.3 93.2
PSO <0.001 99.1 53.2 91.5
IPSO <0.001 99.0 54.1 91.5

80
Non-PSO <0.12 92.2 71.3 89.2
PSO <0.05 90.0 70.9 89.8
IPSO <0.01 96.2 62.4 90.1

160
Non-PSO <0.42 80,8 74.0 87.3
PSO <0.31 82.6 69.1 89.5
IPSO <0.20 94.2 68.6 94.5

250
Non-PSO <0.93 68.5 81.3 83.8
PSO <0.68 82.4 78.2 89.6
IPSO <0.32 86.5 73.2 93.1

6. Conclusions and future work

The IOT system implements ZigBee wireless sensor network technology combined with RFID technology to monitor the
status of a given region. This work proposes better IOT system improvement strategies than the traditional optimal solution
does. The general PSO multi-sensor data fusion computing error probability is below 0.01%. The improved PSO IOT system
is reliable owing to its simplicity, high solution quality, rapid convergence and insignificant computational burden, which
is superior to existing PSO approaches. The iterative nature of the improved PSO algorithm is highly promising for use in
high-speed real-time applications, especially if optimization must be carried out frequently.

This work develops a friendly interface that can be set to sensor node monitoring standards with other devices in order
to enhance the control area status. RFID technology in the IOT system allows for controlled access in themovement of goods.
Individuals are logged based on the RFID gag system. The RFID tag provides the identity and control systems access, thus
permitting the IOT system to record personnel identity andmovements. In addition to allowing visiting personnel towork in
a company through flexible security mechanisms, the proposed IOT system utilizes critical elements such as ZigBee sensors,
an embedded systemandRFID applications. Furthermore, each node displays information data from the interface, integrated
with the ZigBee and RFID interface to monitor both the status of each node and the control region for precise measurement
via the proposed PSO algorithms.
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