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a b s t r a c t

The automatic recognition of animal sounds is one of the powerful techniques for replacing
the traditional ecological survey method that mainly depends on manpower, which is
hence both costly and time consuming. This study developed an automatic frog call
recognition system based on the combination of a pre-classification method of the syllable
lengths and a multi-stage average spectrum (MSAS) method. In this system, the input frog
syllables are first classified into one of the four groups determined by the pre-classification
method according to syllable length. Then the proposed MSAS method is used to extract
the standard feature template to analyze the time-varying features of each frog species and
to recognize the input frog syllable by a template matching method. In all, 960 syllables
recorded from 18 frog species are included in this study to evaluate the accuracy of the
proposed frog call recognition system. The experimental results demonstrate that the
proposed one-level (using the MSAS method only) and two-level (combining the syllable
length pre-classification and MSAS methods) recognition methods can provide the best
recognition accuracies of 91.9% and 94.3%, respectively, compared with other recognition
methods based on dynamic time warping (DTW), spectral ensemble average voice prints
(SEAV), k-nearest neighbor (kNN) and support vector machines (SVMs).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, many ecological habitats have been severely affected by human destruction and natural calamities.
Ecologists worldwide are now actively studying and investigating animal habitats to understand the changes in the
ecosystems [1,2]. However, traditional ecological survey work mainly depends on manpower, which is both costly and
time consuming. It is also problematic to obtain true information because of the difficulty of approaching some sensitive or
dangerous study subjects. Hence it is essential to develop an automatic ecological survey system to replace the traditional
approach. Recording animal sounds to recognize their species is one of the powerful methods now being used in automatic
ecological surveys. Thismethod integrates advanced sensor anddigital signal processing technologies, and can automatically
process a large amount of ecological data to reduce the manpower costs.

Several animal sound recognition methods have been proposed which extract the features that can characterize the
animal sounds to classify their species [3–10]. Taylor et al. [3] developed a recognition method based on spectrogram
analysis to identify 22 frog species recorded in north Australia. The peak values in the spectrogram were defined as the
features of the frog vocalization. However, spectrogram analysis is time consuming and it is not easy to find accurate
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Fig. 1. Illustrations of the sound signals recorded from the Sauteris frog: (a) the time-domain waveform, (b) the time–frequency spectrum, and (c) the
frequency spectrum.

reference points in the time axis for the analysis of all frog syllables. Lee et al. [4] also introduced a recognition method
based on spectrogram analysis to detect each syllable and calculate the Mel-frequency cepstrum coefficients (MFCCs) of
each frame. Their study defined the features by all of the averagedMFCCs in each frame and used linear discriminant analysis
for classifying 30 kinds of frog calls and 19 kinds of cricket calls. However the averagedMFCC lost the time-varying features,
and consequently it was difficult to accurately identify the species with similar frequency components. Because, in general,
the syllables have different lengths, the dynamic time warping (DTW) algorithmwhich can be used for comparing variable-
length sequences has been widely applied in the previous studies [5–7]. Myers and Rabiner [5]applied the DTW algorithms
for word recognition, while Kogan and Margoliash [6]and Somervuo et al. [7] used them to recognize bird sounds. Accurate
detection of the syllable position is critical for the recognition accuracy of theDTWmethod. Tyagi et al. [8] further proposed a
spectral ensemble average voice print (SEAV)method, and combined theDTWand SEAVmethods to improve the recognition
accuracy of the bird sounds. The SEAVmethod extracted the features by calculating the averaged spectrumof each frame, and
recognized the bird species by the method of template matching based on the calculation of the Euclidian distance between
the SEAV of the reference and the test template [11,12]. However, if the frequency features of the input signal varywith time,
the SEAVmethod cannot provide time-varying features. Recently, Fagerlund [9] applied support vector machines (SVMs) to
recognize bird species, while Huang et al. [10] introduced the k-nearest neighbor (kNN) and SVMs to classify frog sounds.
Three features, spectral centroid, signal bandwidth and threshold-crossing rate, were extracted to serve as the features for
frog sound classification. However, these approaches have their drawbacks. In the kNN method, the k value which varies
with the number of syllables needs to be predefined [13], while too many support vectors in the SVM classifier would result
in a problem of overfitting, and therefore this approach needs extra processing to reduce the number of vectors [14,15].

Figs. 1(a) and 2(a) demonstrate the time-domain waveforms recorded from the Sauteris and Olive frogs, respectively.
All of the frog calls in this paper were digitized at a 22.05 kHz sampling rate and 16-bit resolution. The corresponding
time–frequency spectra are shown in Figs. 1(b) and 2(c), respectively, and they have different time-varying features in the
frequency components. However, the corresponding frequency spectra as shown in Figs. 1(c) and 2(c) are similar. Hence if
the time-varying features are not considered in the design of the frog call recognition system, it is hard to accurately classify
the two frog species which have similar frequency spectra. Another important feature of frog calls is the syllable length,
as shown in Fig. 3(a) and (b). The syllable length of the bull frog is about 700 ms which is much longer than the 40 ms of
the white lipped tree frog. If the syllable length can be included in the frog call recognition system, it would be expected to
further enhance recognition accuracy.
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Fig. 2. Illustrations of the sound signals recorded from the Olive frog: (a) the time-domain waveform, (b) the time–frequency spectrum, and (c) the
frequency spectrum.

Fig. 3. Examples of the syllables for (a) bull frog, and (b) white lipped tree frog.

In order to preserve the time-varying features of the frog call in the frequency domain, this study proposes an automatic
frog call recognition system based on a multi-stage average spectrum (MSAS) method which can first extract the time-
varying features of the call, and then recognize the input frog syllable using a template matching method. This study also
proposes a pre-classificationmethod of the syllable lengthswhich can exclude those frog specieswhose syllable length is not
in the same group as that of the input syllable prior to the MSAS analysis. There were 18 frog species and 960 test syllables
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Fig. 4. Block diagram of the automatic frog call recognition system.

included in this study for the evaluation of the performance of the proposed automatic recognition system. The study results
demonstrate that the recognition performance of the proposed MSASmethod is better than that of other potential methods
based on the techniques of DTW, SEAV, kNN and SVM, and the proposed pre-classification method of the syllable lengths
can further enhance the recognition accuracy of frog calls.

2. Architecture of the automatic frog call recognition system

The proposed automatic frog call recognition system includes signal preprocessing, syllable segmentation, pre-
classification of the syllable lengths, extraction of the standard feature templates using the MSAS method, and recognition
of the frog syllables. Fig. 4 illustrates a block diagram of the proposed frog call recognition system. A detailed description of
each stage is provided below.

2.1. Signal preprocessing

All of the recorded frog calls were re-sampled at 22.05 kHz, and re-quantified to the range of [−1, 1] by a 16-bit mono
format. According to the sampling theorem, the highest available frequency of the input sound signal can be up to 11.025 kHz
in this study according to the sampling theorem. Because the low-frequency components with large amplitudes would
reduce the contribution of the high-frequency components, this study further introduced a first-order high-pass filter
with finite impulse response (FIR) to enhance the high-frequency components by reducing the low-frequency components,
defined as follows:

y(n) = s(n) − αs (n − 1) (1)

where s(n) is the input frog call, y(n) is the output of the high-pass filter, and the constant α determines the cutoff frequency
of the high-pass filter and was set at 0.95 in this study. The filtered signals were then separated into frames with a length
of 512 samples. The neighboring frame has an overlap of 256 samples. Each frame was further passed through a Hamming
window for the reduction of the edge effects due to the discontinuities at the two sides of each frame. The Hammingwindow
is optimized to minimize the maximum sidelobe in the frequency domain and can get about 40 dB of sidelobe suppression,
which can be defined as

w(n) = 0.54 − 0.46 cos


2nπ
L − 1


, 0 ≤ n ≤ L − 1 (2)

where L is the length of the frame and is set at 512 in this study. The signal after the windowing process can be expressed as

x(n) = w(n)y(n) (3)
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where x(n) denotes the signal in a frame after the windowing process. Each frame was then transformed from the time-
domain signal x(n) into the frequency-domain signal X(k) by fast Fourier transformation, defined as follows [16]:

X(k) =

L−1
n=0

x(n)e−j2π kn/L, 0 ≤ k ≤ L − 1 (4)

where k is the discrete frequency variable. The spectra of all frames are provided for the following analyses.

2.2. Syllable segmentation

The method of syllable segmentation is mainly based on the combination of the analyses of the frog call energy and
zero-crossing rate [17–21]. The energy E of each frame is defined as follows:

E =

L−1
k=0

|x(k)| (5)

where x(k) denotes the signal in a frame, and L is the length of the frame and is set at 512 in this study. The zero-crossing
rate Z is the rate at which the signal changes from positive to negative and back, and is defined by

Z =
1
L

L−1
k=0

1
2

|sgn[x(k + 1)] − sgn[x(k)]| (6)

where

sgn[x(k)] =


1, x(k) ≥ 0
−1, x(k) < 0. (7)

Fig. 5 demonstrates an example of the syllable segmentation for a Swinhoe’s frog call. Fig. 5(a) displays the time-domain
waveform, and Fig. 5(b) and (c) plot the energy curve and zero-crossing rate, respectively. When only the frog call energy
was analyzed and applied to detect the syllable, the detected syllable segment was from points B to C, as shown in Fig. 5(a).
It is obvious that the syllable segment cannot be detected accurately by the analysis of the frog call energy due to the low
energy levels presented at the regions from points A to B and from points C to D. Hence, the analysis of the zero-crossing rate
was further applied to enhance the accuracy of the syllable segmentation. Fig. 5(a) shows that the accurate syllable segments
from points A to C can be detected after the adjustment of the zero-crossing rate. The length of the detected syllable segment
was calculated for the use of the following analyses.

2.3. Pre-classification of the syllable lengths

Because the lengths of the syllables of most frog species are different, syllable length is one of the useful features for
identifying frogs. However it is unavoidable that the calls of some frogs have similar syllable lengths. For this reason this
study proposes the pre-classification of the syllable lengths to classify all the syllables into just 4 groups, instead of trying
to immediately classify the input frog call into its exact group. At this stage, it is only necessary to compare the features
of the input frog syllable with the standard template of each frog species in the same group, as defined in Section 2.4. This
pre-classification can first exclude those frog species whose syllable lengths are not in the same group as that of the input
syllable, hence increasing both recognition accuracy and speed. The proposed pre-classification of the syllable lengths is
based on the binary split method [22], and is described as follows:
Step 1: All of the syllable lengths are labeled as the first group, and the average length is calculated and defined as the

centroid of the syllable lengths in that group.
Step 2: Split each centroid according to the initial formula defined as follows:

C+

g = Cg(1 + ε)

C−

g = Cg(1 − ε)
(8)

where ε is the split coefficient which has a value between 0 and 1 andwas set at 0.05 in this study. Cg is the centroid
of the gth group, 1 ≤ g ≤ 4, and C+

g and C−
g are the new centroids split from Cg . The number of groups grows at a

rate of 2 for each split.
Step 3: Calculate the differences between each syllable length and the new centroids in the gth group. All of the syllable

lengths are further separated into two subgroups in the gth group according to whether they are closer to C+
g or C−

g .
Step 4: Update the centroids C+

g and C−
g which are updated as the average syllable lengths of the two subgroups obtained

from step 3.
Step 5: Repeat steps 3 and 4 until the change in the updated centroids is less than a predefined threshold.
Step 6: Repeat steps 2 to 5 until the syllable lengths are separated into 4 groups. The final results are then stored in the

database for the use of the following recognition of the frog syllables.
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Fig. 5. An example of the syllable segmentation for a Swinhoe’s frog call: (a) the time-domain waveform, (b) the energy curve and (c) the zero-crossing
rate.

2.4. Extraction of standard feature templates by analysis of the multi-stage average spectrum

Because the frequency feature of the frog calls varieswith time, this study proposes a newmethodbased onMSAS analysis
to extract the time-varying features within each frog syllable, and to establish a standard feature template for each frog
species. The proposedMSASmethod can calculate the average spectrum from neighboring frames that have similar spectra,
and has the advantage that the energy of the averaged spectrum is more stable than that of a single frame. The extraction
of the standard feature template adopted three randomly selected syllables for each frog species. The detailed steps of the
MSAS method are described as follows:
Step 1: All of the frames of the input frog syllable were first divided equally into 3 time stages. The total number of frames

in the input syllable depends on the syllable length. The following steps are used to reclassify the similar frames into
the same stage in accordance with the forward direction of time and to establish the standard feature template. For
example, if a frame j is classified into stage i, the frame after frame j can only be classified into stage i or the stage
after i.

Step 2: Calculate the average spectrum of each stage defined as follows:

Si(k) =

Ni−1
j=0

Xj(k)


Ni
, 0 ≤ k ≤ N − 1 (9)

where Si(k) denotes the average spectrum of the ith stage,
Xj(k)

 is the amplitude spectrum of the jth frame, Ni is
the total number of frames in the ith stage, and k is the discrete frequency variable.

Step 3: Calculate the distance from the spectrum of each frame to the average spectrum of each stage according to the
formula of Euclidian distance defined as follows:

d( j, i) =

 L−1
k=0

[Xj(k) − Si(k)]2 (10)

where d( j, i) is the distance between the jth frame and the ith stage.
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Step 4: Calculate the shortest accumulation distance from the first to the last frame and stage. Fig. 6 illustrates an example
of the frame and stage plane for calculating the shortest accumulation distance. The initial point (1, 1) denotes the
distance between the first frame and the first stage. Let Acc( j, i) denote the shortest accumulation distance from
the initial point to point (j, i) which is defined as follows:

Acc( j, i) = min {Acc( j − 1, i) + d( j, i),Acc( j − 1, i − 1) + d( j, i)} (11)

where Acc(1, i) = d(1, i) for all i, the operation of min {} can obtain the minimum value among the operands.
Acc( j − 1, i) + d( j, i) and Acc( j − 1, i − 1) + d( j, i) are the two candidate paths, a and b, respectively, as shown in
Fig. 6, which are considered in the calculation of the shortest accumulation distance at the point (j, i). Because one
frame can only be classified into one stage, the path from point (j, i − 1) to (j, i) is forbidden in this study.

Step 5: Search for the shortest path from the final point (Nf , 3) back to the initial point (1, 1) alongwith those paths that have
a shorter distance between the two candidate paths after all of the shortest accumulation distances for each frame
j and each stage i have been calculated. The points on the shortest path are recorded as a sequence of coordinates
P = {P(1), P(2), . . . , P(Nf )} where Nf is the total number of frames in a syllable. For example, if the coordinate
sequence of the shortest path is P = {(1, 1), (2, 1), (3, 2), (4, 3)}, it represents that the spectra of frames 1 and 2
are closest to that of stage 1, and the spectra of frames 3 and 4 are closest to those of stages 2 and 3, respectively.
Hence, the frames 1 and 2 will be classified into stage 1, and frames 3 and 4 will be classified into stages 2 and 3,
respectively.

Step 6: Reclassify each frame into a new stage according to the coordinate sequence of the shortest path.
Step 7: Repeat steps 2 to 6 until the change in the updated shortest accumulation distance of the final point is lower than

the predefined threshold.
Step 8: Calculate the feature template for the input syllable, which is defined as the average spectrum of each stage.
Step 9: Repeat steps 1 to 8 to obtain three feature templates from three randomly selected syllables for each frog species.

The standard feature template is defined as the average of the three feature templates, and is stored in the database
for the use of the following recognition of the frog syllables.

Fig. 7 demonstrates an example of the training results of the feature template for Swinhoe’s frog call. Fig. 7(a) plots the time-
domainwaveform of the syllable. Fig. 7(b) displays the time–frequency spectrum of the syllable and shows the time-varying
features of the frequency components within the frog syllable. Fig. 7(c) shows the relations between frame and stage. The
first 12 frames were classified as stage 1, frames 13 to 25 were classified as stage 2, and frames 26–42 were classified as
stage 3. Fig. 7(d) illustrates the average spectra of the three stages. It is worth noting that the MSAS method can preserve
the time-varying features within the frog syllable.

2.5. Recognition of the frog syllables

After the pre-classification of the syllable lengths and extraction of the standard feature templates, the input frog syllable
will be automatically recognized by a one-level or two-level recognition method. In the one-level recognition method, the
input syllable was only compared with the standard feature templates of all frog species to find the closest frog species,
and was not pre-classified by its syllable length. In the two-level recognition method, the length of the input syllable was
first compared with each centroid of the four groups determined from the pre-classification of the syllable lengths, and was
classified into the group whose centroid had the minimum difference from the input syllable length. The input syllable was
then comparedwith the standard feature template of each frog species in the same group in order to find the closest species.
The templatematchingmethod for comparing the input syllable with the standard feature template is described as follows:

Step 1: Calculate the distances from the spectrum of each frame of the input syllable to the average spectrum of each stage
of the standard feature template for one frog species according to Eq. (10).

Step 2: Calculate the shortest accumulation distance from the first to the last frame and stage according to Eq. (11). The
shortest accumulation distance at the final point (Nf , 3) is applied to analyze the difference between the input
syllable and the standard feature template.

Step 3: Repeat steps 1 and 2 to calculate each shortest accumulation distance at the final point (Nf , 3) for all frog species.
The input syllable will be recognized as a frog species that has theminimum value among the shortest accumulation
distances of all frog species.

3. Experimental results

The proposed frog call recognition system was developed based on the commercial LabVIEW software using a graphical
programming language from National Instruments. The frog calls were recorded in a wild field located in the Shan-Ping
forest ecological garden in Kaohsiung city, Taiwan. Table 1 lists the family, scientific and common names of the 18 frog
species recorded in this study. The input frog calls were re-sampled at 22.05 kHz and digitized to a 16-bit mono format.
Three syllables randomly selected from each frog species were used to establish the standard feature templates, and a total
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Fig. 6. A frame and stage plane for calculating the shortest accumulation distance.

Fig. 7. An example of the training results of the feature template for Swinhoe’s frog call: (a) the time-domain waveform of the syllable, (b) the
time–frequency spectrum, (c) the relation between frame and stage, and (d) the average spectrum of each stage.
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Table 1
Summary of the family, scientific and common names of the 18 frog species recorded in this study.

Family Scientific name Common name

Ranidae

Rana adenopleura Olive frog
Rana psaltes Harpist frog
Rana catesbeiana Bull frog
Limnonectes kuhlii Kuhlis frog
Rana latouchii Latouche’s frog
Fejervarya limnocharis Indian Rice frog
Pseudoamolops sauteri Sauteris frog
Rana swinhoana Swinhoe’s frog

Rhacophoridae

Chirixalus eiffingeri Eiffinger’s tree frog
Polypedates megacephalus White lipped tree frog
Rhacophorus moltrechti Moltrechtis green tree frog
Rhacophorus taipeianus Taipei green tree frog
Buergeria japonica Japanese tree frog

Microhylidae

Microhyla ornata Ornate narrow-mouthed toad
Kaloula pulchra Malaysian narrow-mouthed toad
Microhyla heymonsi Heymonsis narrow-mouthed toad
Microhyla steinegeri Stejneger’s paddy frog

Bufonidae Bufo bankorensis Common toad

of 960 syllables were applied to test the performance of the proposed frog call recognition system. The recognition accuracy
is defined as follows:

Accuracy(%) =
Nc

Ns
× 100% (12)

where Nc is the number of syllables which can be correctly recognized, and Ns is the total number of test syllables.
Table 2 lists the analytical results of the one-level recognitionmethods for each frog species. The details of theDTW, SEAV,

kNN, and SVMmethods can be found in the previous studies [3–10]. It can be seen from the results in Table 2 that the MSAS
recognition method provided the best recognition accuracy of 91.9% compared with 87.4% for kNN, 85.3% for DTW, 86.9%
for SEAV, and 90.1% for SVM for all frog species. Furthermore, only the MSAS recognition method had an accuracy greater
than 70% for all frog species, and in no case was the accuracy of the MSAS recognition method inferior to that of the other
methods. The study results also show that, because the spectrum of the Olive frog is similar to that of the Sauteris frog, it is
easy to misclassify these two species. The accuracy of the kNN, SEAV and SVM recognition methods was only 68.3%, 58.7%
and 60.3%, respectively, for the recognition of the Sauteris frog. However the MSAS recognition method can enhance the
accuracy for this species to 74.6%. This may be because the MSAS recognition method preserves the time-varying features
of the syllables. Although the accuracy of the DTW recognitionmethod can also reach 73% for the recognition of the Sauteris
frog, the accuracywas only 62.1% and 66.7% for thewhite lipped tree frog and the ornate narrow-mouthed toad, respectively.
Hence it is obvious that the performance of the MSAS recognition method was better than that of the kNN, DTW, SEAV and
SVMmethods.

This study also compared the two-level recognition methods with the previous study [8]. Table 3 lists the analytical
results of the two-level recognition methods for each frog species.

The ‘‘SEAV + DTW at Rank Level’’ method combined the SEAV and DTW methods by summing the top three reference
templates, ranked according to the Euclidean distances between the test and the reference template. The ‘‘SEAV + DTW at
Measurement Level’’ method combined the SEAV and DTW methods by averaging the first three Euclidean distances. The
‘‘SEAV + DTW at Two Levels’’ method first processed the calls at rank level; then, if two or more frogs were classified into
the same species, themeasurement level was applied tomake the final decision. Detailed descriptions of thesemethods can
be found in the previous study [8]. In the ‘‘SEAV + Syllable Length’’ and the ‘‘MSAS + Syllable Length’’ methods, the length
of the input syllable was first compared with each centroid of the four groups determined from the pre-classification of the
syllable lengths, andwas classified into the groupwhose centroid had theminimumdifference from the input syllable length.
The input syllable was then recognized by the SEAV and MSAS methods, respectively. In this way, it was only necessary to
compare the input syllables with those in the same group.

The results of the current study show that the ‘‘MSAS + Syllable Length’’ method has the best recognition accuracy of
94.3% compared with 85.2% for ‘‘SEAV + DTW at Measurement Level’’, 88.5% for ‘‘SEAV + DTW at Rank Level’’, 89.6% for
‘‘SEAV + DTW at Two Levels’’, and 90.6% for ‘‘MSAS + Syllable Length’’. Furthermore, there were only three instances where
the recognition accuracy of the ‘‘MSAS+ Syllable Length’’ methodwas less than 90%, namely 82.5% for the Sauteris frog, 80%
for the Swinhoe’s frog, and 89.7% for the white lipped tree frog. The recognition accuracy of the proposed ‘‘MSAS + Syllable
Length’’ method for the recognition of the Sauteris frog can reach 82.5%, which is much better than that of the other four
methods, namely 66.7%, 66.7%, 66.7% and 68.3%. If the results in Table 3 are compared with those in Table 2, it can be found
that the two-level recognition method of ‘‘MSAS + Syllable Length’’ can further enhance the accuracy from 91.9% to 94.3%
for all frog species, and from 74.6% to 82.5% for the Sauteris frog compared with the one-level recognition method of the
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Table 2
Results of the one-level recognition.

Common name Total syllable Correct syllable (accuracy)
kNN DTW SEAV SVM MSAS

Olive frog 52 41 (78.9%) 45 (86.5%) 40 (76.9%) 47 (90.4%) 48 (92.3%)
Harpist frog 2 2 (100.0%) 2 (100.0%) 2 (100.0%) 2 (100.0%) 2 (100.0%)
Bull frog 12 12 (100.0%) 12 (100.0%) 12 (100.0%) 12 (100.0%) 12 (100.0%)
Kuhlis frog 64 60 (93.8%) 58 (90.6%) 61 (95.6%) 62 (96.9%) 62 (96.9%)
Latouche’s frog 81 73 (90.1%) 74 (91.4%) 72 (88.9%) 73 (90.1%) 74 (91.4%)
Indian Rice frog 74 70 (94.6%) 69 (93.2%) 70 (94.6%) 72 (97.3%) 72 (97.3%)
Sauteris frog 63 43 (68.3%) 46 (73.0%) 37 (58.7%) 38 (60.3%) 47 (74.6%)
Swinhoe’s frog 35 26 (74.3%) 28 (80.0%) 25 (71.4%) 26 (74.3%) 28 (80.0%)
Eiffinger’s tree frog 84 77 (91.7%) 73 (86.9%) 75 (89.3%) 76 (90.5%) 77 (91.7%)
White lipped tree frog 29 25 (86.2%) 18 (62.1%) 26 (89.7%) 25 (86.2%) 26 (89.7%)
Moltrechtis green tree frog 72 59 (81.9%) 60 (83.3%) 63 (87.5%) 62 (86.1%) 63 (87.5%)
Taipei green tree frog 97 92 (94.9%) 90 (92.8%) 96 (99.0%) 97 (100.0%) 97 (100.0%)
Japanese tree frog 70 58 (82.9%) 54 (77.1%) 60 (85.7%) 61 (87.1%) 62 (88.6%)
Ornate narrow-mouthed toad 15 12 (80.0%) 10 (66.7%) 12 (80.0%) 12 (80.0%) 12 (80.0%)
Kaloula pulchra 7 7 (100.0%) 6 (85.7%) 7 (100.0%) 7 (100.0%) 7 (100.0%)
Microhyla heymonsi 37 30 (81.1%) 33 (89.2%) 30 (81.1%) 34 (91.9%) 34 (91.9%)
Microhyla steinegeri 131 118 (90.1%) 108 (82.4%) 111 (84.7%) 124 (94.7%) 124 (94.7%)
Common toad 35 34 (97.1%) 33 (94.3%) 35 (100.0%) 35 (100.0%) 35 (100.0%)

Total 960 839 (87.4%) 819 (85.3%) 834 (86.9%) 865 (90.1%) 882 (91.9%)

Table 3
Results of the two-level recognition method.

Common name Total
syllable

Correct syllable (accuracy)

SEAV + DTW at
Measurement Level

SEAV + DTW
at Rank Level

SEAV + DTW
at Two Levels

SEAV + Syllable
Length

MSAS+ Syllable
Length

Olive frog 52 40 (76.9%) 40 (76.9%) 44 (84.6%) 49 (94.2%) 50 (96.2%)
Harpist frog 2 2 (100.0%) 2 (100.0%) 2 (100.0%) 2 (100.0%) 2 (100.0%)
Bull frog 12 12 (100.0%) 12 (100.0%) 12 (100.0%) 12 (100.0%) 12 (100.0%)
Kuhlis frog 64 56 (87.5%) 61 (95.6%) 62 (96.9%) 61 (95.6%) 62 (96.9%)
Latouche’s frog 81 73 (90.1%) 71 (87.7%) 74 (91.36%) 75 (92.6%) 78 (96.3%)
Indian Rice frog 74 69 (93.2%) 72 (97.3%) 72 (97.3%) 71 (96.0%) 72 (97.3%)
Sauteris frog 63 42 (66.7%) 42 (66.7%) 42 (66.7%) 43 (68.3%) 52 (82.5%)
Swinhoe’s frog 35 25 (71.4%) 25 (71.4%) 25 (71.4%) 26 (74.3%) 28 (80.0%)
Eiffinger’s tree frog 84 73 (86.9%) 76 (90.5%) 76 (90.5%) 77 (91.7%) 78 (92.9%)
White lipped tree frog 29 19 (65.5%) 25 (86.2%) 26 (89.7%) 26 (89.7%) 26 (89.7%)
Moltrechtis green tree frog 72 61 (84.7%) 63 (87.5%) 63 (87.5%) 64 (88.9%) 65 (90.3%)
Taipei green tree frog 97 90 (92.8%) 95 (97.9%) 96 (99.0%) 96 (99.0%) 97 (100.0%)
Japanese tree frog 70 56 (80.0%) 60 (85.7%) 60 (85.7%) 61 (87.1%) 63 (90.0%)
Ornate narrow-mouthed toad 15 11 (73.3%) 13 (86.7%) 13 (86.7%) 14 (93.3%) 14 (93.3%)
Kaloula pulchra 7 7 (100.0%) 7 (100.0%) 7 (100.0%) 7 (100.0%) 7 (100.0%)
Microhyla heymonsi 37 32 (86.5%) 33 (89.2%) 33 (89.2%) 31 (83.8%) 35 (94.6%)
Microhyla steinegeri 131 115 (87.8%) 118 (90.1%) 118 (90.1%) 120 (91.6%) 129 (98.5%)
Common toad 35 35 (100.0%) 35 (100.0%) 35 (100.0%) 35 (100.0%) 35 (100.0%)

Total 960 818 (85.2%) 850 (88.5%) 860 (89.6%) 870 (90.6%) 905 (94.3%)

MSAS. This is because the proposed syllable length pre-classification method can first exclude those frog species whose
syllable lengths are not in the same group as that of the input syllable, hence increasing the recognition accuracy and speed.

4. Discussion and conclusions

This study has demonstrated that the proposed MSAS method can extract the time-varying features of the frog syllable,
and the proposed pre-classification method of the syllable lengths can first exclude those frog species whose lengths are
not in the same group as that of the input syllable for the automatic recognition of frog calls. An FIR high-frequency filter is
also proposed to enhance the high-frequency components by decreasing the low-frequency components. This can avoid the
problem of the features of the frog calls being dominated by the low-frequency components with large amplitude spectra.
This study also introduced the combination of the analyses of the frog call energy and zero-crossing rate to detect the
syllables, which can increase the accuracy of the endpoint detection of the syllables compared with only analyzing the
energy or zero-crossing rate. The proposed MSAS method separates each syllable into three time stages, and the number of
frames included in each time stage is not fixed or dependent on the time-varying features of the frog syllable. The example
illustrated in Fig. 7 demonstrates that the averaged spectra of the three time stages differed significantly for the Swinhoe’s
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frog call, and hence it was possible to preserve the time-varying features of the frequency components. The recognition
performance of the proposed one-level MSAS method was compared with other potential one-level methods based on the
DTW, SEAV, kNN and SVM techniques. The SEAV method is mainly based on the analysis of the average spectrum, so it is
difficult to capture the spectral variation of the frog syllables. Because the DTWmethod compares the spectra of the standard
and test templates for each frame, it can retain the time-varying information. However, each frame only includes 512 sample
points since spectrum variation among frames that is too great may affect recognition accuracy. Although the SVMmethod
also provided a good recognition accuracy of 90.1%, the proposed MSAS method can provide the best accuracy of 91.9%
among the five methods.

The proposed pre-classification method of the syllable lengths is based on the binary split method which can separate
all syllable lengths in the same group into two groups for each split according to the closeness of the syllable length. All of
the syllable lengths are pre-classified into four groups. The input test syllable can first be compared with the centroids of
the four groups to determine the group that the test syllable belongs to, and the following template matches only include
the standard templates in the same group. The proposed two-level method, combining the pre-classification method of
the syllable lengths and the MSAS method, was further compared with other two-level methods including‘‘SEAV + DTW
at Rank Level’’, ‘‘SEAV + DTW at Measurement Level’’, ‘‘SEAV + DTW at Two Levels’’, and ‘‘SEAV + Syllable Length’’. The
previous study results of Tyagi et al. [8] have demonstrated that the two-level methods of ‘‘SEAV + DTW at Rank Level’’ and
‘‘SEAV+ DTW at Two Levels’’ have improvements of 5.7% and 11.4%, respectively, in comparison with the one-level method
of SEAV for the recognition performance of bird calls, but ‘‘SEAV + DTW at Measurement Level’’ has a degradation of 5.7%.
The experimental results of this study also showed that both ‘‘SEAV+DTW at Rank Level’’ and ‘‘SEAV+DTW at Two Levels’’
have better recognition accuracy of frog calls compared with the SEAV method, but that the accuracy of ‘‘SEAV + DTW at
Measurement Level’’ is worse. However, the proposed two-level method presents the best recognition performance among
the five two-level methods, and can further increase the recognition accuracy from 91.9% to 94.3% compared with the one-
level MSAS method. In conclusion, the proposed pre-classification method of the syllable lengths and the MSAS method are
promising techniques for the design of an automatic recognition frog call system. Future works can focus on the reduction
of background noises and the recognition of hybrid frog calls.
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