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This paper presents a new partial discharge (PD) pattern recognition method based on the cerebellar
model articulation controller (CMAC). CMAC is an adaptive system by which defect types for partial dis-
charge can be identified by referring to a table rather than by mathematical solution of simultaneous
equations. CMAC maps input features of partial discharge into an input vector which is used to address
a memory where the appropriate defect types are stored. Five types of defect models are well-designed
on the base of investigation of many power apparatus failures. A PD detector is used to measure the raw
three-dimension (3D) PD patterns, from which the fractal dimension, the lacunarity, and the mean dis-
charges of phase windows are extracted as PD features. These critical features form the cluster domains
of defect types. Using the characteristics of self-learning, association, and generalization, like the cerebel-
lum of human being, the proposed CMAC-based pattern recognition scheme enables a powerful, straight-
forward, and efficient pattern recognition method. Moreover, the CMAC has the advantages of higher
accuracy, shorter learning times, and noise tolerance, which are useful in recognizing the PD patterns
of electrical apparatus. To demonstrate the effectiveness of the proposed method, comparative studies
using a multilayer neural network (MNN) and K-means method are conducted on 200 sets of field-test
PD patterns with high accuracy and high tolerance in noise interference.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Partial discharges (PD) play an important role in the aging and
breakdown of insulation system, and their presence may indicate
defects which reduce lifetime and reliability of high-voltage appa-
ratus. Partial discharge detectors have been widely applied to insu-
lation diagnosis for high-voltage power apparatus, such as XLPE
power cables, gas insulated switchgears, and power transformers
(Leung & MacAlpine, 2002; Metwally, 2004; Naderi et al., 2008).
The purpose of the insulation diagnosis for the power apparatus
is to give system operators the information on dielectric deteriora-
tion degree of defect power equipments. And recently the informa-
tion about these quantities has become obtainable, precise, and
detailed. The main parameters of 3D PD patterns of the deteriora-
tion are widely used namely phase angle /, discharge magnitude q,
and number of discharge n. Each type of defect can be character-
ized by a specific 3D pattern. Therefore, the various defect types
can be recognized and identified by the 3D patterns.

Various pattern recognition techniques, including fuzzy cluster-
ing (Galil, Sharkawy, Salama, & Bartnikas, 2005; Mazzetti et al.,
2006) and neural network (NN) (Candela, Mirelli, & Schifani,
ll rights reserved.
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2000; Karthikeyan, Gopal, & Venkatesh, 2008; Karthikeyan, Gopal,
& Vimala, 2005; Salama & Bartnikas, 2002), have been extensively
used in PD recognition. The fuzzy approaches require human exper-
tise and have been successfully applied to this field. A number of
difficulties in acquiring knowledge and in maintaining the database
are discussed. For example, the main advantage of the NN can di-
rectly acquire experience from the training data. However, the
raw values of 3D patterns were used with the NN for PD recognition
in previous studies (Salama & Bartnikas, 2002), the main drawbacks
are that the structure of the NN has a great number of neurons with
connections, and time consumptions in training. Another limitation
of the NN approach is the inability to use linguistically descriptive
output, because it is difficult to understand the content of network.

To overcome the drawbacks described above, a novel CMAC neu-
ral network based methodology is presented in this paper. Depend-
ing on the known defect types, the CMAC recognition structure is
built first. By using the known fault patterns as the training data
to train the CMAC, then the trained CMAC can be used to recognize
the defect types of partial discharge. The characteristics of associa-
tion and generalization enable the CMAC-based recognition scheme
to become a powerful, straightforward, and accurate pattern recog-
nition method. The proposed recognition system not only simpli-
fied the configuration, but also alleviated the dependency to
experts’ expertise. Furthermore, in order to improve the accuracy,
the fractal dimension, the lacunarity, and the mean discharges of
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phase windows are extracted from the raw values of 3D patterns as
PD features for the proposed CMAC-based recognition system. The
complex nature of the PD pattern shapes and the ability of fractal
geometry to model complex shape (Jian, 2000; Zhao, Qiu, & Kuffel,
2002) are the main reasons which encouraged the authors to study
the feasibility of fractal geometry for PD pattern interpretation. To
demonstrate the effectiveness of the CMAC-based recognition
method with fractal features enhancement, 200 sets of PD patterns
are tested. The results show that the CMAC-based recognition
method is considerably a practical solution.
2. Theory of the CMAC

The CMAC was first proposed by Albus in 1975 (Albus, 1975). It
is used as a model of human memory performing reflexive process-
ing to produce output signals of reflection immediately when cer-
ebellum receives input signal. The similar input features will
produce similar outputs. The CMAC is a kind of local learning feed-
forward neural network with simple architecture, quick learning
convergence, and effective implementation. Although it is linear
between different nerve cells, the mapping of the whole network
is nonlinear. The basic aim of CMAC is to store data into overlap-
ping regions in an associative manner such that the stored data
can easily be recalled, although it uses less physical space (Liu &
Wang, 2005).

2.1. Structure of the CMAC

In this section, to achieve highly accuracy and speed up the rec-
ognition, a CMAC recognition model is introduced. The structure of
the CMAC is shown in Fig. 1, which contains (1) quantization, (2)
segment address coding, (3) concatenation, and (4) summation of
the fired memory address weights to obtain an output (Handei-
man, Lane, & Gelfand, 1990). The mapping process must be satis-
fied that the similar inputs will excite the similar addresses.
Therefore, if the input states are similar in input space, the output
will have their corresponding sets of association cells overlap. The
details are introduced in the following statements:

2.1.1. Quantization
As shown in Fig. 1 the input features are first through the quan-

tization mapping to produces a quantization level output. The
quantization output can be described as (Handeiman et al., 1990)
Input
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Fig. 1. Structure of the CM
qji ¼ Qðxji; xji min; xji max; qi maxÞ; j ¼ 1;2; � � � ;n ð1Þ

where n is the number of input features, i is defect type. The reso-
lution of this quantization depends on the minimum and maximum,
xji min and xji max, and on the numbers of quantization levels qi max,
which are extracted from input features. High resolution will have
good generalization ability but needs with more memory size. The
quantization level of each input features can be calculated as

qjiðxjiÞ ¼ Ceilððxji � xji minÞ=ððxji max � xji minÞ=ðqi max � 1ÞÞÞ ð2Þ

where Ceil(x), a function rounding the elements of x to the nearest
integers and extracting the elements of xji to the nearest positive
integers. To simplify the quantization process, here we consider
the qi max as 16. That is, each input features will be quantized from
0 to 15. Fig. 2 shows the diagram of quantization mapping. For
example, if xji min = 2.19, xji max = 6.4, and input xji = 3.9, we can calcu-
late by Eq.(2) as qij = Ceil((3.9 � 2.19)/({(6.4 � 2.19)/14})) = 6. The
obtained the quantization levels of the input feature is 8. If
xji < xij min, we set the xji quantization level as 0. If xji > xji max, then
xji we set is 15. For each input features we will obtain corresponding
quantization levels.

Then we code the quantization levels into binary code. The
characteristic of CMAC NN is that similar inputs activate similar
addresses. The fired memory address coding must satisfy this con-
dition. Because using this method can reduce memory size and
benefit for fired memory addresses.

2.1.2. Segment address mapping
When the quantization levels is finished, then performing V

mapping shown in Table 1 outputs m segment addresses. m is
the number of associated memory cells. Table 1 lists the mapping
relation of the segment address and quantization levels, in which
the quantization level qi max and m are assumed to be 8 and 4,
respectively. For example, the quantization level 6 be mapped into
a group of segment addresses [v1ji,v2ji,v3ji,v4ji] = [9,6,7,8].
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Table 1
Mapping relation of quantization level and segment address.
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2.1.3. Concatenation and binary coding
Each input feature though segment address mapping obtains m

segment addresses. The concatenation unit will concatenate these
segment addresses as virtual addresses. The concatenation can be
described as

Vji ¼ Concatðv j1i;v j2i; � � � ;v jniÞ for j ¼ 1;2; � � � ;m ð3Þ

The similar inputs activating the similar memory addresses is
one of the most important characteristics of CMAC NN. The fired
memory addresses coding has to satisfy this requirement. Utilizing
binary representation will benefit the following fired memory
addresses coding and memory size reduction. The minimum bit
number to encode the segment addresses in binary representation
is

Nmb ¼ Ceilðlog2ðqi max þm� 1ÞÞ ð4Þ

In our study, for each type i the number of input features n is 12, the
number of associated memory cells m is 10, and the number of
quantization levels qi max is 16. Therefore, the minimum bit number
Nmb is 5 and the virtual addresses Vji consist of 60 bits of binary
codes.

2.1.4. Segmentation, fired addresses coding, and output mapping
Three bits are taken as a segment (group) from the 60 bits series

in the virtual addresses which is expressed as 101 111. . .010 100 010
B for an illustration. From LSB to MSB, we extract the memory ad-
dress as a1 = 010B = 2, a2 = 100B = 4, a3 = 010B = 2, . . . a19 =
111B = 7, a20 = 101B = 5. It implies that the number of the fired
addresses A⁄ is 20. The features of the specific defect type are distrib-
uted and stored over the fired 20 memory addresses. Finally, adding
the weights of the excited memory addresses, w2

1;w
4
2;w

2
3; � � � ;

w7
19;w

5
20, will obtain the CMAC output. The output of CMAC can be

expressed as

yi ¼
Xm

j¼1

XA�

k¼1

w
akj

kji for i ¼ 1;2; � � � ; ‘ ð5Þ

where akj are the fired memory addresses and ‘ is the number of de-
fect types.

2.2. Training phase

In training phase, the patterns of type i are used to train the
memory layer i, which is used to memorize the defect type i. An
output indicated defect type can be obtained by the CMAC proce-
dures of aforementioned Fig. 1, which is the feature input and
the serious mapping, including quantization, concatenation, binary
coding, segmentation, fired addresses coding, and summation of
the fired memory addresses weights.

During the pattern training, if the output of the CMAC does not
match the desired defect type, the weights at the fired addresses
are updated using the following simple steepest-descent update rule

w
akj

kjiðnewÞ ¼ w
akj

kjiðoldÞ þ b
yd � yi

A�
forj ¼ 1;2; � � � ;m and

k ¼ 1;2; � � � ;A� ð6Þ

where w
akj

kjiðnewÞ is the weight values after the weights tuning. akj

denotes the fired memory addresses. b is the learning gain whose
value is between interval [0,1] yd = 1 is the desired output and yi

is the actual output.
The convergence is confirmed for a supervised learning system

(Wong & Sideris, 1992). In this paper, we assume the memory size
is large enough and the collision will not happen. In other word,
the convergence is guaranteed. Assume that the memory layer i
output 1 denotes the pattern belonging to type i, and the number
of training patterns for defect type i is d. The performance index
is defined as

Ei ¼
Xd

t¼1

ðyt
i � 1Þ2 for i ¼ 1;2; � � � ; ‘ ð7Þ

where the subscript i represents the ith defect type and the super-
script t represents the tth training pattern. The training process will
stop when Ei < e occurs, where e is a small positive constant.

2.3. CMAC recognition method

The overall flow chart of the proposed recognition method
based on CMAC NN is shown in Fig. 3. It can be simply described
as follows

Step 1: Build the structure of CMAC fault recognition system.
We define 12 input nodes, 5 output nodes, quantization level
qi max ¼ 16 (0–15), learning gain b = 0.9, and the number of fired
addresses A⁄ = 20.
Step 2: Input the training patterns and perform quantization,
segmentation, concatenation, and summation of the fired mem-
ory addresses weights to obtain an output.
Step 3: Calculate the actual output and compare with the desired
output (yd = 1), if the result does not match, then use Eq.(6) to
update the weight values. We set 5 as the learning epoch.
Step 4: Evaluate the training performance. If Ei < e, the training
process is finished. Save the memory weights, others go to step 2.
Step 5: Carry out the pattern recognition. Input the patterns to
be recognized, though quantization, segmentation, concatena-
tion, and summation of the fired memory addresses weights
which we have already trained to obtain an output.

Steps 1–4 construct an off-line mode. The training time may be
shorter just few seconds or longer more than few hours depending
on the data resolution, qi max, A⁄, and the number of features. Fortu-
nately, the off-line mode just only needs to run one time. Gener-
ally, the long training time will be better obtained better and
more weights exacted, just like the learning mode of human being.

3. Extraction of PD feature

Fractals have been very successfully used to address the prob-
lem of modeling and to provide a description of naturally occurring
phenomena and shapes, wherein conventional and existing math-
ematical methods were found to be inadequate (Chen, Keller, &
Crownover, 1983; Satish & Zaeng, 1995). In recent years, this tech-
nique has attracted more attention for classification of textures
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and objects present in images and natural scenes (Li, Du, & Sun,
2009; Tang, Tao, & Lam, 2002, and for modeling complex physical
processes. In this theory, fractal dimensions are allowed to depict
surface asperity of complicated geometric things. Therefore, it is
possible to study complex objects with simplified formulas and
fewer parameters (Voss, 1985). PD is also a natural phenomenon
occurring in electrical insulation systems, which invariably contain
tiny defects and non-uniformities, and gives rise to a variety of
complex shapes and surfaces, both in a physical sense as well as
in the shape of 3D PD patterns acquired using digital PD detector.

The fractal features, fractal dimension and lacunarity, and the
mean discharges of phase windows are extracted to highlight the
more detailed characteristics of the raw 3D PD patterns. The ex-
tracted features in this paper are introduced as follows:

3.1. Fractal dimension

While the definition of fractal dimension by self-similarity is
straightforward, it is often difficult to estimate/compute for a given
image data. However, a related measure of fractal dimension, the
box dimension, can be more easily computed. In this work, the
method suggested by Voss, and others in Chen et al. (1983) and
Voss (1985), for the computation of fractal dimension D from the
image data has been followed. Let p(m,L) define the probability
that there are m points within a box of size L (i.e. cube of side L),
which is centered about a point on the image surface. P(m,L) is nor-
malized, as below, for all L.

XN

m¼1

pðm; LÞ ¼ 1 ð8Þ

where N is the number of possible points within the box. Let S be
the number of image points (i.e. pixels in an image). If one overlays
the image with boxes of side L, then the number of boxes with m
points inside the box is (S/m)p(m,L). Therefore, the expected total
number of boxes needed to cover the whole image (Voss, 1985) is

NðLÞ ¼
XN

m¼1

S
m

pðm; LÞ ¼ S
XN

m¼1

1
m

pðm; LÞ: ð9Þ
This value is also proportional to L�D and the box dimension can
be estimated by calculating p(m,L) and N(L) for various values of L,
and by doing a least square fit on [log(L), �log(N(L))]. To estimate
p(m,L), one must center the cube of size L around an image point
and count the number of neighboring points m that fall within
the cube. Accumulating the occurrences of each number of neigh-
boring points over the image gives the frequency of occurrence of
m. This is normalized to obtain p(m,L). Values of L are chosen to be
odd to simplify the centering process. Also, the centering and
counting activity is restricted to pixels having all their neighbors
inside the image. This will obviously leave out image portions of
width = (L � 1)/2 on the borders. This reduced image is then con-
sidered for the counting process. Consequently, large values of L re-
sults in increased image areas from being excluded during the
counting process, thereby increasing uncertainty about counts
near border areas of the image. This is one of the sources of errors
for the estimation of p(m,L) and thereby D. Additionally, the com-
putation time grows with the L value. Hence, L = 3, 5, 7, and 11 are
chosen for this work.

3.2. Lacunarity

Theoretically, ideal fractal could confirm to statistical similarity
for all scales. In other words, fractal dimensions are independent
scales. However, it has been observed that fractal dimension alone
is insufficient for purposes of discrimination, since two differently
appearing surfaces could have the same value of D. To overcome
this, Mandelbrot introduced the term called lacunarity K, which
quantifies the denseness of an image surface. Many definitions of
this term have been proposed and the basic idea in all these is to
quantify the ‘gaps or lacunae’ present in a given surface. One of
the useful definitions of this term as suggested by Mandelbrot
(1983, chap. 5) is

MðLÞ ¼
XN

m¼1

mpðm; LÞ ð10Þ

and

M2ðLÞ ¼
XN

m¼1

m2pðm; LÞ ð11Þ
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where N is the numbers of point in the data set of size L, the lacu-
narity becomes

KðLÞ ¼ M2ðLÞ � ½MðLÞ�2

½MðLÞ�2
ð12Þ

Fig. 4 shows the procedure for extracting fractal features. In
fractal dimension extraction the first step is to transfer PD pattern
to a 512 � 512 matrix. N(L) is then obtained by using different box
size L. Finally, the fractal dimension can be obtained by fitting the
data [logL, �log(N(L))].

In the lacunarity extraction the first step is to transfer PD
pattern to a binary image 512 � 512 matrix and then to choose dif-
ferent box size L. We choose L = 3, the best result for the lacunarity,
to compute the M(L) and M2(L). Finally, the lacunarity can be
computed by Eq.(12).
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Fig. 5. Illustration for the calculation of mean values of charges.
3.3. Mean values of discharges

The detailed features extraction process of mean values of dis-
charges is shown in Fig. 5. A 3D PD pattern is divided into 10 phase
windows whose width is set to 36�. The mean discharge is calcu-
lated in every phase window. We will obtain 10 mean discharge
parameters on the whole 360� phase angles. If each phase window
is further divided into n �m equal sections, the mean value of each
phase window can be calculated by

v i ¼
Pm

j¼1

Pn
k¼1qjnjkPm

j¼1

Pn
k¼1njk

for i ¼ 1;2; � � � ;10 ð13Þ

where qj is the discharge magnitude in jth row. njk is the discharge
number in jkth section.
4. PD recognition system design

The block diagram of the designed PD recognition system is
shown in Fig. 6. It consists of three main parts: well-designed de-
fect models, measurement system, and CMAC-based recognition
method. The details of the three main parts are introduced in sub-
sequent paragraphs.

4.1. Defect model

According to the fact that gap discharge and surface discharge are
more likely to occur in high-voltage power equipments, five types of
relevant models are well-designed on the base of investigation of
many power equipment failures to outline the features of PD.

T1: Plane to plane model. A 9 mm-in-thickness epoxy with a
3 mm-in-diameter cylindrical cavity is inserted.
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Fig. 6. The block diagram of the designed PD recognition system.

Fig. 7. The practical specimens of the defect model.
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T2: Plane to plane model. A 3 mm-in-thickness epoxy is
inserted.
T3: Needle to plane model. A 4 mm-in-diameter copper stick is
lathed at one end to a 30� 0.5 mm-in-diameter cone needle
which is 6 cm away from the plane.
T4: Needle to plane model. A 4 mm-in-diameter copper stick is
lathed at one end to a 30� 1 mm-in-diameter cone needle which
is 6 cm away from the plane.
T5: Needle to plane model. A 4 mm-in-diameter copper stick is
lathed at one end to a 30� 2 mm-in-diameter cone needle which
is 6 cm away from the plane.

Both the plane and the needle are made of copper. The practical
specimens of the defect models are shown in Fig. 7.

4.2. Measurement system

The structure of the measuring system is shown in Fig. 8. The
autotransformer is used to slowly rise the output voltage of
the transformer to 5.4 kV as the testing voltage on defect model.
The detector LDP-5 equipped with a capacitive sensor measures the
PD electrical signal generated by the defect model. The PD signal is
converted into a computer by NI DAQ card (PCI-6110) for further anal-
ysis. For each type of defect model, the measurement is conducted for
40 times. The sampling rate of the PCI-6110 DAQ card is set to 2 M/s
and data acquisition duration per measurement is 24 cycles (60 Hz).
The acquired PD signal is transferred into a 3D pattern. The features
of the 3D pattern are extracted and used as the input parameters of
the recognition system based on ENN recognition method.

A man–machine interface for the PD measurement is designed
using a LabVIEW software. Analyzing the signals through the Lab-
VIEW can obtain the instant values of PD signals and the compar-
ison with the testing voltage (60 Hz) in real time. The designed
man–machine interface for PD measurement is shown in Fig. 9.
The red and green curves indicate the PD signal and the testing
voltage waveform, respectively.

We use PD detector LDP-5 equipped with a capacitive sensor to
measure the PD signal of the defect models. A typical PD impulse
detected and manipulated by LDP-5 is shown in Fig. 10. The rise
time is faster than the fall time. The frequency range of the impulse
is 30–40 kHz.

5. Experiment results and discussions

The proposed CMAC-based recognition method has been imple-
mented according to the measured PD pattern on the defect mod-
els. There are a total of 200 sets of measurement data associated
with the five types of defect models. Some important experiment
results are shown as follows:

5.1. 3D PD patterns

The typical 3D PD patterns transferred from the measured PD
signals for each defect model are shown in Fig. 11. The main
parameters of the 3D PD patterns are phase angle u, discharge
magnitude q, and the numbers of discharge n. Observing the re-
sults, the number of discharge in type T1 is less then that in type
T2, but distribution in type T1 is wider than that in type T2. We
can observe easily that the numbers of discharge in types T3, T4,
and T5 are greater than that in types T1 and T2. A large number
of the discharges exist when the needle-tip is thinner. The dis-
charges of needle to plane model almost happen in positive period.
Sometimes types T3 and T4 having discharges happen in negative
period, in which the number of discharge is small, but the dis-
charge magnitude is large. According to the 3D PD pattern in each
defect model, we can find some different features between each
defect models.

5.2. Feature extraction

The features of a total of 200 sets of 3D PD patterns are ex-
tracted and used as the input parameters of the recognition system



Fig. 8. The structure of the measurement system.

Fig. 9. The designed man–machine interface for PD measurement.
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base on CMAC recognition method. Two features, the fractal
dimension and the lacunarity, are calculated based on the fractal
theory. The distribution of the fractal dimensions and the lacuna-
rities of all 3D PD patterns are shown in Fig. 12. It is obvious that
features belonging to a particular defect type gather together.
According to the two fractal features, types T1 and T2 can be easily
classified. However, the distributions of types T3, T4, and T5 over-
lap somewhere, which causes inaccurate classification. Therefore
we take the mean values of discharge associated with phase win-
dows as additional features. The mean discharges of all type of de-
fect models associated with phase windows are shown in Fig. 13.
We can find that the distribution of T1 mean discharge magnitude
is wider than the others. T4 mean discharge magnitudes in phase
windows six to nine have the maximum discharge than the others.
In Fig. 13, we can find that many obvious differences exist in each
defect type model.



Fig. 11. Five typical defect type of 3D PD patterns. (a) type T1 (b) type T2 (c) type T3 (d) type T4 (e) type T5.
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5.3. Performance evaluation of the proposed CMAC method

Table 2 shows the performance of the CMAC-based recognition
method compared with the MNN and K-means. It can found that
the recognition speed of K-means is the fastest one than any oth-
ers, but the recognition accuracy rate is the lowest. It should be
noted that the structure of the CMAC is simpler than that of the
MNN because of simple mapping and calculation. Moreover, the
CMAC-based recognition method also permits fast adaptive pro-
cessing for a large amount of training data. The CMAC method
not only takes experts’ experience from learning, but also produces
meaningful output after learning, because the optimal classified
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Fig. 12. Distribution of fractal features of all model.

Fig. 13. Mean discharge magnitude in phase windows.

Table 2
Performance comparison of the CMAC method.

Compared items Recognition method

CMAC MNN K-means

Structure 12-5 12-12-5 12-5
No. of connection –a 204 –a

Learning epochs 10 1000 –b

CPU time (sec) 0.43 105 0.03

a Connections between input and output are unnecessary.
b Learning epochs are unnecessary.

Table 3
Accuracy rates of PD recognition.

Noise (%) Average recognition ratesa (%)

CMAC (%) MNN (%) K-means (%)

0 96.0 100 82.0
±10 96.4 98.5 73.2
±20 95.6 89.9 69.8
±30 94.0 83.8 67.5

a Average of 10 random trials.
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boundaries of the features are clearly determined. It can also be ob-
served from Table 2 that the CMAC has shorter recognition time
than MNN. The learning epochs of the CMAC-based recognition
method we set are 10 epochs. It totally spends 0.43s of CPU time.
Compared with MNN, the MNN needs 1000 learning epochs so that
the output can arrive at the target, because the structure and the
calculation of the MNN are more complicated. It will totally spend
105 CPU time (sec). Although the PD recognition system is trained
offline, the training time may not be critical to be evaluated. How-
ever, if we want to implement the PD recognition system in a
microcomputer for a real-time PD detecting device or portable
instrument, the performance of training would be important.
5.4. Recognition accuracy of the proposed CMAC recognition method

The PD signal would unavoidably contain some noise. The
sources of noise may be generated from the PD detector, the envi-
ronmental electromagnetic, or the human mistakes, etc. To take
the noise into account, 200 sets of testing data are created by add-
ing the random uniformly distributed noises from ±10% to ±30%.
The recognition accuracy rates with different amounts of noise
added are given in Table 3. To demonstrate the effectiveness of
the proposed method, comparative studies using a MNN with three
layers and 12-12-5 neurons and K-means algorithm are all con-
ducted on the same testing data. In the case of no noise added,
the recognition accuracy of the MNN arrives at 100% which is
slightly better than that of CMAC at 96%. However, the accuracy
of CMAC recognition even is 94% in the case of ±30% noise added.
The accuracies of the MNN and the K-means algorithm are only
83.8% and 67.5% in the same condition, respectively. It shows that
the proposed method has pretty high recognition accuracy and
good tolerance in noise interference.
6. Conclusions

This paper presents a new PD recognition method based on the
fractal features and the CMAC. The fractal features are used to
highlight the more characteristics of the raw 3D PD patterns in de-
tail. Using training patterns to train CMAC like the brain of human
being, each defect type features is distributed and memorized on
an assigned memory layer. In the experiment, the recognition rates
of the proposed method are quite high up to 94% in extreme noise
of ±30%. The experimental results indicate that this method is able
to implement an efficient classification with a very high recogni-
tion rate. Compared with the MNN method, the proposed method
needs learning processes but it takes quite few training times. In
addition, the calculation of the proposed recognition algorithm is
fast and very simple. This new method merits more attention to
be considered as a useful tool in PD recognition problems.
Acknowledgment

The research was supported by the National Science Council of
the Republic of China, under Grant No. NSC99-2213-E-167-030-
MY3.
References

Albus, J. S. (1975). A new approach to manipulator control: The cerebellar model
articulation controller (CMAC). Transaction of ASME Journal of Dynamic Systems,
Measurement, and Control, 97, 220–227.

Candela, R., Mirelli, G., & Schifani, R. (2000). PD recognition by means of statistical
and fractal parameters and a neural network. IEEE Transaction on Dielectrics and
Electrical Insulation, 7(1), 87–94.

Chen, S. S., Keller, J. M., & Crownover, R. M. (1983). On the calculation of fractal
features from images. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 15, 1087–1090.



6584 H.-C. Chen, F.-C. Gu / Expert Systems with Applications 39 (2012) 6575–6584
Galil, T. K. A., Sharkawy, R. M., Salama, M. M. A., & Bartnikas, R. (2005). Partial
discharge pattern classification using the fuzzy decision tree approach. IEEE
Transaction on Instrumentation and Measurement, 54(6), 2258–2263.

Handeiman, D. A., Lane, S. H., & Gelfand, J. J. (1990). Integrating neural networks and
knowledge-based systems for intelligent robotic control. IEEE Control System
Magazine, 10, 77–87.

Jian, L., et al. (2000). Pattern recognition of partial discharge with fractal analysis to
characteristic spectrum. In Proceedings of the 6th International Conference on
Properties and Application of Dielectric Materials, pp. 21–26.

Karthikeyan, B., Gopal, S., & Venkatesh, S. (2008). Partial discharge pattern
classification using composite versions of probabilistic neural network
inference engine. Expert Systems with Applications, 34(3), 1938–1947.

Karthikeyan, B., Gopal, S., & Vimala, M. (2005). Conception of complex probabilistic
neural network system for classification of partial discharge patterns using
multifarious inputs. Expert Systems with Applications, 29(4), 953–963.

Leung, Y. C., & MacAlpine, J. M. K. (2002). Initial experience with the partial
discharge monitoring of high-voltage motors. International Journal of Electrical
Power and Energy Systems, 61(1), 33–40.

Li, J., Du, Q., & Sun, C. X. (2009). An improved box-counting method for image fractal
dimension estimation. Pattern Recognition, 42(11), 2460–2469.

Liu, J. C., & Wang, Z. (2005). CMAC-based fuzzy controller for strip flatness pattern
recognition. Journal of Northeastern University (Natural Science), 26(8), 718–721.

Mandelbrot, B. B. (1983). Fractal geometry of nature. New York: Freeman.
Mazzetti, C. et al. (2006). Partial discharge pattern recognition by neural-fuzzy
networks in heat-shrinkable joint and terminations of XLPE insulated
distribution cables. IEEE Transaction on Power Delivery, 21(3), 1035–1044.

Metwally, I. A. (2004). Status review on partial discharge measurement techniques
in gas-insulated switchgear/lines. International Journal of Electrical Power and
Energy Systems, 69(1), 25–36.

Naderi, M. S. et al. (2008). Application of wavelet analysis to the determination of
partial discharge location in multiple-a transformer windings. International
Journal of Electrical Power and Energy Systems, 78(2), 202–208.

Salama, M. M. A., & Bartnikas, R. (2002). Determination of neural network topology
for partial discharge pulse pattern recognition. IEEE Transaction on Neural
Networks, 13(2), 446–456.

Satish, L., & Zaeng, W. S. (1995). Can fractal features be used for recognizing 3-D
partial discharge patterns? IEEE Transaction on Dielectrics and Electrical
Insulation, 2, 352–359.

Tang, Y. Y., Tao, Y., & Lam, E. C. M. (2002). New method for feature extraction based
on fractal behavior. Pattern Recognition, 35(5), 1071–1081.

Voss, R. F. (1985). Random fractal: Characterization and measurement. New York:
Plenum Press. Chapter 4.

Wong, Y. F., & Sideris, A. (1992). Learning convergence in the cerebellar model
articulation controller. IEEE Transaction on Neural Networks, 3(1), 115–121.

Zhao, Z., Qiu, Y., & Kuffel, E. (2002). Application of fractal to PD signal recognition. In
Proceedings of IEEE International Symposium on Electrical Insulation, pp. 523–526).


	Pattern recognition with cerebellar model articulation controller and fractal features  on partial discharges
	1 Introduction
	2 Theory of the CMAC
	2.1 Structure of the CMAC
	2.1.1 Quantization
	2.1.2 Segment address mapping
	2.1.3 Concatenation and binary coding
	2.1.4 Segmentation, fired addresses coding, and output mapping

	2.2 Training phase
	2.3 CMAC recognition method

	3 Extraction of PD feature
	3.1 Fractal dimension
	3.2 Lacunarity
	3.3 Mean values of discharges

	4 PD recognition system design
	4.1 Defect model
	4.2 Measurement system

	5 Experiment results and discussions
	5.1 3D PD patterns
	5.2 Feature extraction
	5.3 Performance evaluation of the proposed CMAC method
	5.4 Recognition accuracy of the proposed CMAC recognition method

	6 Conclusions
	Acknowledgment
	References


