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a b s t r a c t

This paper proposes a novel partial discharge (PD) pattern recognition method based on extension neural
network (ENN) using fractal features. Five types of defect models are well-designed on the base of inves-
tigation of power apparatus failures. A PD detector is used to measure the raw three-dimension (3D) PD
patterns, from which the fractal dimension, the lacunarity, and the mean discharges of phase windows
are extracted as PD features. These critical features form the cluster domains of defect types. An ENN
is then developed to recognize the pattern of partial discharge, which utilizes an extension distance
(ED) instead of Euclidean distance to measure the similarities among the recognized data and the cluster
domains. The ENN with simpler structure than traditional neural networks is capable of processing the
clustering problems which have a range of feature values, supervised learning, continuous input, and
descriptive output. Moreover, the ENN has the advantages of higher accuracy, shorter learning times,
and noise tolerance, which are useful in recognizing the PD patterns of electrical apparatus. To demon-
strate the effectiveness of the proposed method, comparative studies among multilayer neural network
(MNN), extension theory, and K-means are conducted on 200 sets of field-test PD patterns with rather
encouraging results.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Partial discharge measurement has been widely application in
insulation diagnosis for high-voltage power apparatus, such as
XLPE power cable (Okabe, Kaneko, Minagawa, & Nishida, 2008;
Yue et al., 2006), gas insulated switchgear, and power transform-
ers. The purpose of the insulation diagnosis for power apparatus
is to give system operators the information on dielectric deteriora-
tion degree of high-voltage equipment. The main parameters of the
3D PD patterns are phase angle /, discharge magnitude q, and the
number of discharge n. Using the PD detector to measure the signal
of electrical or magnetic field variation caused by the PD in defect
power equipment, the information about these quantities have be-
come obtainable, precise, and detailed. Each type of defect can be
characterized by the shape of the 3D pattern. Therefore, an expert
can utilize the pattern recognition to identify the different defect
types in accordance with the 3D patterns.

Fractal has been very successfully used in description of natu-
rally occurring phenomena and complex shape (Ruello et al.,
2010; Wu et al., 2010), such as mountain ranges, coastlines, clouds,
and so on, wherein traditional mathematics were found to be
ll rights reserved.
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inadequate. PD also is a natural phenomenon occurring in electri-
cal insulation systems, which invariably contain tiny defects and
non-uniformities, and gives rise to a variety of complex shapes
and surfaces, both in a physical sense as well as in the shape of
3D PD patterns acquired using PD detector. This complex nature
of the PD pattern shapes and the ability of fractal geometry to
model complex shapes, are the main reasons which encouraged
the authors to make an attempt to study its feasibility for PD pat-
tern interpretation.

Various pattern recognition techniques, including fuzzy cluster-
ing (Li, 2009; Li, Liao, Grzybowski, & Yang, 2010) and neural net-
work (NN) (Karthikeyan, Gopal, & Venkatesh, 2008; Karthikeyan,
Gopal, & Vimala, 2005), have been extensively used in PD recogni-
tion. The fuzzy approaches require human expertise and have been
successfully applied to this field. However, there are difficulties in
acquiring knowledge and in maintaining the database. The main
advantage of the NN can directly acquire experience from the
training data. However, the training data must be sufficient to de-
scribe a status. Another limitation of the NN approach is the inabil-
ity to use linguistically descriptive output, because it is difficult to
understand the content of network.

To improve the performances of traditional clustering methods,
an extension neural network (ENN) (Wang & Hung, 2003; Wang,
2005; Lay et al., 2008) based clustering method is proposed for
the PD pattern recognition of high-voltage power apparatus in this
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article. The fractal features, fractal dimension and lacunarity, and
the mean discharges are extracted from the raw 3D PD patterns
to highlight the more detailed characteristics of PD. These three
features are selected as the input variables of the ENN. The ENN
utilizes an extension distance instead of Euclidean distance (ED)
to measure the similarities among the tested data and the cluster
domain. It can quickly and stably learn to categorize input patterns
and permit adaptive processes to access new significant informa-
tion. Moreover the ENN has shorter learning times and a simpler
structure than traditional MNN. To demonstrate the effectiveness
of the ENN-based recognition method, 200 sets of field-test PD pat-
terns are tested. The results show that the ENN-based recognition
method is suitable as a practical solution for PD pattern
recognition.
2. Theory of the ENN

The ENN is a new topology of neural network, which combines
extension theory (Cai, 1983; Wang, Tseng, Chen, & Chao, 2009) and
neural network. The extension theory provides a novel distance
measurement for classification and the NN can embed the salient
features of parallel computation power and learning capability.
The ENN is capable of processing the clustering problems which
have a range of feature values, supervised learning, continuous in-
put, and descriptive output.

2.1. Structure of the ENN

In PD pattern recognition, the PD features of the associated de-
fect types cover a range of values. Therefore, the ENN is appropri-
ate for PD recognition. Fig. 1 shows the schematic structure of the
ENN. It consists of the input layer and the output layer. There are
two connection values called weights between each input node
and each output node, one represents the upper bound of the clas-
sical domain of the feature, the other represents the lower bound.
The lower bound and the upper bound of the weight between the
jth input node and the kth output node are denoted by wL

kj and wU
kj,

respectively. All the weights of an ENN are adjusted by performing
a proposed learning algorithm on input features. The output layer
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Fig. 1. Structure of the extensi
is a competitive layer. There is one node in the output layer for
each prototype pattern, and only one output node with nonzero
output to indicate the prototype pattern that is closest to the input
vector. The operation modes of an ENN can be separated into the
learning phase and the operation phase, which are discussed in
the next section.

2.2. Learning algorithm of the ENN

The learning algorithm of the ENN is essential a supervised
learning which tunes the weights of the ENN to achieve good clus-
tering performance or minimize the clustering error. Before learn-
ing, several variables have to be defined. Training data set to be
X ¼ fX1;X2; . . . ;XNsg, where Ns is the total number of training pat-
ters. The ith training pattern is Xp

i ¼ fx
p
i1; x

p
i2; . . . ; xp

ing, where n is the
total number of features, and p is the category of ith pattern. To
evaluate the clustering performance, if Ne is total error number,
then the total error rate Er can be defined as

Er ¼
Ne

Ns
ð1Þ

The supervised learning algorithm of ENN is explicitly described as
follows (Wang, 2005):

Step 1. Set the connection weights between input node and out-
put node by the matter-element model
on neur
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where k = 1,2, . . .,m and j = 1, 2, . . .,n. m is the total number of clus-
ter and n is the total number of features. cj is the jth feature of the
cluster k, and Vkj ¼ hwL

kj;w
U
kji is the classical domain of cluster k. Let

Ti is the corresponding target output of the ith training pattern Xi.
The weights of training pattern can be determined as follows:
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wL
kj ¼min

Ti2k
ðxijÞ ð3Þ

wU
kj ¼max

Ti2k
ðxijÞ ð4Þ

for i = 1,2, . . .,Ns, j = 1, 2, . . .,n, and k = 1, 2, . . .,m.
Step 2. Calculate the initial weight centers of each cluster
defined as

wcen;kj ¼
wU

kj þwL
kj

2
ð5Þ

Step 3. Read the ith training pattern and its cluster number p
Xp
i ¼ fx

p
i1; x

p
i2; . . . ; xp

ing ð6Þ

where p 2 m.
Step 4. Calculate the extension distance, the distance between
the input pattern Xi and the kth cluster, as follows (Wang, 2005:

EDik ¼
Xn

j¼1

jxij �wcen;kjj �
wU

kj
�wL

kj

2
wU

kj
�wL

kj

2

þ 1

0
@

1
A

for k ¼ 1;2; . . . ;m: ð7Þ

The extension distance can be graphically presented as Fig. 2. The
ED can characterize the distance between x and a range of hwL,wUi.
We can observe that different ranges of classical domains can arrive
at different distances. This is a significant advantage in classification
application. Usually, if the feature covers a small range, the data
precision requirement is high sensitive to distance.

Step 5. Find the b, such that EDib = min{EDik}. If b=p, then go to
Step 7; Otherwise, go to Step 6.
Step 6. Update the weights of pth and bth clusters as follows:
(a) Update the cluster center
wnew
cen;pj ¼ wold

cen;pj þ gðxij �wold
cen;pjÞ ð8Þ

wnew
cen;bj ¼ wold

cen;bj � gðxij �wwold
cen;bjÞ ð9Þ

(b) Update the pth and bth cluster

wLðnewÞ
pj ¼ wLðoldÞ

pj þ gðxij �wold
cen;pjÞ

wUðnewÞ
pj ¼ wUðoldÞ

pj þ gðxij �wold
cen;pjÞ

8<
: ð10Þ

wLðnewÞ
bj ¼ wLðoldÞ

bj � gðxij �wold
cen;bjÞ

wUðnewÞ
bj ¼ wUðoldÞ

bj � gðxij �wold
cen;bjÞ

8<
: ð11Þ

where g is a learning rate which is set to 0.1 in this paper. The learn-
ing process is only tuning weights of the pth and bth clusters.
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Fig. 2. Extension distance (ED).
Step 7. Repeat Step 2–6, if all patterns have been classified, then
a learning epoch is finished.
Step 8. Stop, if the clustering process has converged, or the error
has arrived at a preset value; Otherwise, return to Step 3.

The ENN can take human expertise before the learning, and it
can also provide meaningful output after learning, because the
classified boundaries of the features are clearly determined.

2.3. Operation phase of the ENN

Step 1. Read the weight matrix of the ENN.

Step 2. Read a testing pattern as
Xt ¼ fxt1; xt2; . . . ; xtng ð12Þ

Step 3. Use the extension distance (ED) to calculate the distance
between the testing pattern and each cluster by Eq. (5).
Step 4. Find the b, such that EDib = min {EDik}, set the result is 1
to indicate the cluster of the tested pattern.
Step 5. Stop, if all of the tested patterns have been classified;
otherwise, go to Step 2.

3. Extraction of PD features

Fractals have been very successfully used to address the prob-
lem of modeling and to provide a description of naturally occurring
phenomena and shapes, wherein conventional and existing math-
ematical methods were found to be inadequate. In this theory, frac-
tal dimensions are allowed to depict surface asperity of
complicated geometric things. Therefore, it’s possible to study
complex objects with simplified formulas and fewer parameters
(Satish & Zaeng, 1995). PD also is a natural phenomenon occurring
in electrical insulation systems which invariably contain tiny de-
fects and non-uniformities. It gives rise to a variety of complex
shapes and surfaces, both in a physical sense as well as in the shape
of 3D PD patterns acquired using digital PD detector (Chen, Gu, &
Lee, 2008). Both the complex nature of the PD pattern shapes
and the ability of fractal geometry to model complex shapes are
the main reasons which encouraged the authors to make an at-
tempt to study its feasibility for PD pattern interpretation.

The fractal features, fractal dimension and lacunarity, and the
mean discharges of phase windows are extracted to highlight the
more detailed characteristics of the raw 3D PD patterns. The ex-
tracted features in this paper are introduced as follows:

3.1. Fractal dimension

While the definition of fractal dimension by self-similarity is
straightforward, it is often difficult to estimate/compute for a given
image data. However, a related measure of fractal dimension, the
box dimension, can be computed more easily. In this work, the
method suggested by Voss, and others in Voss (1985), for the com-
putation of fractal dimension D from the image data has been fol-
lowed. Let p(m,L) define the probability that there are m points
within a box of size L (i.e. cube of side L), which is centered about
a point on the image surface. p(m,L) is normalized, as below, for all
L

XN

m¼1

pðm; LÞ ¼ 1 ð13Þ

where N is the number of possible points within the box. Let S be
the number of image points (i.e. pixels in an image). If one overlays
the image with boxes of side L, then the number of boxes with m
points inside the box is (S/m)p(m,L). Therefore, the expected total
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number of boxes needed to cover the whole image (Mandelbrot,
1983) is

NðLÞ ¼
XN

m¼1

S
m

pðm; LÞ ¼ S
XN

m¼1

1
m

pðm; LÞ ð14Þ

This value is also proportional to L�D and the box dimension D can
be estimated by calculating p(m,L) and N(L) for various values of L,
and by doing a least square fit on [log(L), log(N(L))]. To estimate
p(m,L), one must center the cube of size L around an image point
and count the number of neighboring points m, that fall within
the cube. Accumulating the occurrences of each number of neigh-
boring points over the image gives the frequency of occurrence of
m. This is normalized to obtain p(m,L). Values of L are chosen to
be odd to simplify the centering process. Also, the centering and
counting activity is restricted to pixels having all their neighbors in-
side the image. This obviously will leave out image portions of
width = (L � 1)/2on the borders. This reduced image is then consid-
ered for the counting process. As is seen, large values of L results in
increased image areas from being excluded during the counting
process, thereby increasing uncertainty about counts near border
areas of the image. This is one of the sources of errors for the esti-
mation of p(m,L) and thereby D. Additionally, the computation time
grows with the L value. Hence, L = 3, 5, 7, and 11 were chosen for
this work. Fig. 3 shows a sample plot of the set [log(L),�log(N(L))]
for the different size L.

3.2. Lacunarity

Theoretically, ideal fractal could confirm to statistical similarity
for all scales. In other words, fractal dimensions are independent of
scales. However, it has been observed that fractal dimension alone
is insufficient for purposes of discrimination, since two differently
appearing surfaces could have the same value of D. To overcome
this, Mandelbrot introduced the term called lacunarity K, which
quantifies the denseness of an image surface. Many definitions of
this term have been proposed and the basic idea in all these is to
quantify the ‘gaps or lacunas’ present in a given surface. One of
the useful definitions of this term as suggested by Chen et al.
(2008) is

MðLÞ ¼
XN

m¼1

mpðm; LÞ ð15Þ

M2ðLÞ ¼
XN

m¼1

m2pðm; LÞ ð16Þ
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Fig. 3. Sample plot of the set [log(L), log(N(L))] for different box size L.
where N is the number of point in the data set of size L, the lacuna-
rity becomes

KðLÞ ¼ M2ðLÞ � ½MðLÞ�2

½MðLÞ�2
ð17Þ

Fig. 4 shows a sample plot of the variation of lacunarity with respect
to box size L (3, 5, 7, 9 and 11). Fig. 5 shows the procedure for
extracting fractal features. In fractal dimension extraction the first
step is to transfer PD pattern to a 512 � 512 matrix. N(L) is then ob-
tained by using different box size L. Finally fitting the data
[logL,�log(N(L))] can obtain fractal dimension. In lacunarity extrac-
tion, the first step is to transfer PD pattern to a binary image
512 � 512 matrix. Then the chosen box size is L = 3, which is the
best box size for the computation of the M(L) and M2(L). Finally,
the lacunarity can be obtained by Eq. (17).

3.3. Mean values of discharges

The detailed features extraction process of mean values of dis-
charges is shown in Fig. 6. A 3D PD pattern is divided into ten phase
windows whose width is set to 36�. The mean discharge is calcu-
lated in every phase window. We will obtain 10 mean discharge
parameters on the whole 360� phase angles. If each phase window
is further divided into n �m equal sections, the mean value of each
phase window can be calculated by

v i ¼
Pm

j¼1

Pn
k¼1qjnjkPm

j¼1

Pn
k¼1njk

for i ¼ 1;2; . . . ;10 ð18Þ

where qj is the discharge magnitude in jth row. njk is the discharge
number in jkth section.

4. PD recognition system design

The block diagram of the designed PD recognition system is
shown in Fig. 7. It consists of three main parts: well-designed de-
fect models, measurement system, and ENN-based recognition
method. The details of the three main parts are introduced in sub-
sequent paragraphs.

4.1. Defect model

According to the fact that gap discharge and surface discharge
are more likely to occur in high-voltage power equipments, five
types of relevant models are well-designed on the base of investi-
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Fig. 4. Sample plot of the variation of lacunarity with respect to box size L.
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gation of many power equipment failures to outline the features of
PD.

T1: Plane to plane model. A 9 mm-in-thickness epoxy with a
3 mm-in-diameter cylindrical cavity is inserted.
T2: Plane to plane model. A 3 mm-in-thickness epoxy is
inserted.
T3: Needle to plane model. A 4 mm-in-diameter copper stick is
lathed at one end to a 30�, 0.5 mm-in-diameter cone needle
which is 6 cm away from the plane.
T4: Needle to plane model. A 4 mm-in-diameter copper stick is
lathed at one end to a 30�, 1 mm-in-diameter cone needle
which is 6 cm away from the plane.
T5: Needle to plane model. A 4 mm-in-diameter copper stick is
lathed at one end to a 30�, 2 mm-in-diameter cone needle
which is 6 cm away from the plane.
Both the plane and the needle are made of copper. The practical
specimens of the defect models are shown in Fig. 8.

4.2. Measurement system

The structure of the measuring system is shown in Fig. 9. The
autotransformer is used to slowly rise the output voltage of the
transformer to 5.4 kV as the testing voltage on defect model. The
detector LDP-5 equipped with a capacitive sensor measures the
PD electrical signal generated by the defect model. The PD signal
is converted into a computer by NI DAQ card (PCI-6110) for further
analysis. For each type of defect model, 40 times measurements are
conducted. The sampling rate of the PCI-6110 DAQ card is set to
2 M/s and data acquisition duration per measurement is 24 cycles
(60 Hz). The acquired PD signal is transferred into a 3D pattern. The
features of the 3D pattern are extracted and used as the input
parameters of the recognition system base on ENN recognition
method.

A man–machine interface for PD measurement is designed
using LabVIEW. Analyzing the signal through LabVIEW can not
only obtain the instant values of PD signal, but also compare to
the testing voltage (60 Hz) in real time. The designed measurement
man–machine interface is shown in Fig. 10. The red and green
curves indicate the PD signal and the testing voltage waveform,
respectively.

We used PD detector LDP-5 equipped with a capacitive sensor
to measure the PD signal of the defect models. A typical PD impulse
detected and manipulated by LDP-5 is shown in Fig. 11. The rise
time is faster than fall time. The frequency of the impulse is about
30–40 kHz.

4.3. ENN-based recognition method

The flow chart of the proposed ENN-based recognition method
is shown in Fig. 12. It is simply described as follows:

Step 1: Set up the training pattern. In training, we used twenty
patterns for training in each defect type.
Step 2: Set up the structure of ENN that consists of twelve input
nodes and five output nodes in this recognition system.
Step 3: Train the ENN using the proposed learning algorithm in
Section 2.2.
Step 4: If the training process is finished then go to Step5;
otherwise go to Step 3.
Step 5: Save the weight vector of the trained ENN.
Step 6: Use the trained ENN for pattern recognition.
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5. Experiment results and discussion

The proposed ENN-based recognition method has been imple-
mented according to the measured PD pattern on the defect mod-
els. There are a total of 200 sets of measurement data associated
with the five types of defect models. Some important experiment
results are shown in the following.

5.1. 3D PD patterns

The typical 3D PD patterns transferred from the measured PD
signals for each defect model are shown in Fig. 13. The main
parameters of the 3D PD patterns are phase angle /, discharge
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magnitude q, and the numbers of discharge n. We can observe that
the number of discharge in type T1 is less then in type T2, but dis-
tribution is wider than type T2. It is also very obvious that the
numbers of discharge in types T3, T4, and T5 are greater than types
T1 and T2. The discharges are happened more frequent when the
needle-tip is thinner. The discharges of needle to plane model
are almost happened in positive period. Sometimes types T3 and
T4 have discharges happened in negative period, in which the
number of discharge is few, but the discharge magnitude is large.
According to the 3D PD pattern in each defect model we can find
some different features between each defect model.

5.2. Feature extraction

The features of a total of 200 sets of 3D PD patterns are extracted
and used as the input parameters of the recognition system base on
ENN recognition method. Two features, the fractal dimension and
the lacunarity, are calculated based on the fractal theory. The distri-
bution of the fractal dimensions and the lacunarities of all 3D PD
patterns is shown in Fig. 14. It is obvious that features belonging
to a particular defect type gather together. According to these two
fractal features type T1 and type T2 can be easily classified.



Fig. 13. Five typical defect type of 3D PD patterns: (a) type T1; (b) type T2; (c) type T3; (d) type T4; (e) type T5.
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However, the distribution of type T3, T4, and T5 overlaps some-
where, which causes inaccurate classification. Therefore we take
the mean values of discharge associated with phase windows as
additional features. The mean discharges of all type of defect models
associated with phase windows are shown in Fig. 15. We can find
the distribution of T1 mean discharge magnitude is wider than
the others. T4 mean discharge magnitudes in phase windows six
to nine have the maximum discharge than the others. In Fig. 15
we can find there are many obvious differences in each defect type
model.
2.06 2.08 2.1 2.12 2.14 2.16 2.18
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0.03

Fractal dimension

T1
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Fig. 14. Distribution of fractal features of all defect models.
5.3. Performance evaluation of the proposed ENN method

Table 1 shows the performance of the ENN method compared
with the extension method, MNN, and K-means. We can find the
K-means is the fastest than the others, but the recognition accuracy
rates are the lowest. It should be noted that the structure of the ENN
is very simple, only 120 connections are needed. Contrarily, the
structure of the MNN needs 204 connections. Moreover the ENN
recognition method also permits fast and adaptive processing for
a large amount of training data, because the learning of ENN only re-
quires tuning upper bounds and lower bounds of the excited con-
nections. The ENN not only takes expert experience from learning,
but also produces meaningful output after learning, because the
optimal classified boundaries of the features are clearly determined.
It can be seen from Table 1 that the ENN has a shorter than MNN. The
number of learning epochs we set is less than 20, which only spends
0.11 s of CPU time. Compared with MNN, the MNN needs 1000
learning epochs in order to arrive at the target. It spends 105s CPU
time because the MNN structure and the calculation are more



Fig. 15. Mean discharge magnitudes in phase windows.

Table 1
Performance comparison of the ENN method.

Compared items Diagnosis method

ENN method Extension method MNN K-means

Structure 12–5 12–5 12–12–5 12–5
No. of connection 120 –b 204 –b

Learning epochs 620a –c 1000 –c

CPU time (s) 0.11 0.25 105 0.03

a ENN learning epochs is set less than 20 epochs.
b Connections between input and output are unnecessary.
c Learning epochs are unnecessary.
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complicated. Although the PD recognition system is trained offline,
the training time maybe is not a critical point to be evaluated. How-
ever, if we want to implement the PD recognition system in a micro-
computer for a real-time PD detecting device or portable
instrument, the performance of training would be important.

5.4. Recognition accuracy of the proposed ENN recognition method

The PD signal would unavoidably contain some noise. The
sources of noise may be generated from the PD detector, the
environmental electromagnetic, or the human mistakes, etc. To
take into account the noise, 200 sets of testing data are created
by adding the random uniformly distributed noises from ±10% to
±30%. The recognition accuracy rates with different amounts of
noise added are given in Table 2. The recognition accuracy without
noise added almost arrives at 100%. To demonstrate the effective-
ness of the proposed method, comparative studies using a BPNN
with 3 layers and 12–12–5 neurons, extension theory, and
K-means algorithm are all conducted on the same testing data.
The ENN recognition even has 97.8% accuracy rate in the case of
±30% noise added. The accuracy of the extension method is 93%,
the BPNN is 83.8%, and the K-means algorithm is only 67.5% in
the same condition. It shows that the proposed method has pretty
high recognition accuracy and good tolerance to noise added. It is
Table 2
Accuracy rates of PD recognition.

% of noise Average recognition ratea (%)

ENN method Extension method MNN K-means

0 99 100 100 82
±10 98.9 99.6 98.5 73.2
±20 98.5 96.8 89.9 69.8
±30 97.8 93 83.8 67.5

a Average of 10 random trials.
very encouraged to implement the proposed method in a PD detec-
tor device for real-time PD recognition.

6. Conclusions

This paper presents a new PD recognition method based on the
fractal features and the ENN for PD recognition of high-voltage
power apparatus. The fractal features and the mean discharges
are used to highlight the more detailed characteristics of the raw
3D PD patterns. The recognition rates of the proposed method
are quite high with 97.8% in extreme noise of ±30%. The experi-
mental results indicate that this method is able to implement an
efficient classification with a very high recognition rate. Compared
with the MNN-based recognition method, the structure of the ENN
is simpler and the learning time is faster than MNN-based method.
Moreover, the proposed ENN-based recognition method also per-
mits fast adaptive processing for a new PD defect, because it only
tunes the boundaries of classified features or adds a new neural
node. From the tested examples, the proposed method has a signif-
icantly high degree of recognition accuracy and shows good toler-
ance to noise added. This new method merits more attention to be
a useful tool in PD recognition problems.
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