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Power Harmonics and Interharmonics Measurement
Using Recursive Group-Harmonic

Power Minimizing Algorithm
Hsiung Cheng Lin

Abstract—The discrete Fourier transform (DFT) is still a widely
used tool for analyzing and measuring both stationary and tran-
sient signals in power system harmonics. However, the misappli-
cations of the DFT can lead to incorrect results caused by some
problems such as an aliasing effect, spectral leakage, and picket-
fence effect. A strategy of recursive group-harmonic power
minimizing algorithm is developed for systemwide harmonic/
interharmonic evaluation in power systems. The proposed algo-
rithm can restore the dispersing spectral leakage energy caused
by the DFT and regain its harmonic/interharmonic magnitude
and respective frequency. Every iteration loop for harmonic/
interharmonic evaluation can guarantee to be convergent using
the proposed group-harmonic bin power algorithm. Consequently,
not only high precision in integer harmonic measurement can be
retained but also the interharmonics can be accurately identified,
particularly under system frequency drift. The numerical example
is presented to verify the proposed algorithm in terms of robust,
fast, and precise performance.

Index Terms—Discrete Fourier transform (DFT), group har-
monics, harmonics, interharmonics.

I. INTRODUCTION

W ITH increasing use of power electronic systems and
time-variant nonlinear loads in industry, the generated

power harmonics and interharmonics have resulted in seri-
ous power-line pollution. Power supply quality is therefore
aggravated. Traditional harmonics may cause negative effects
such as signal interference, overvoltage, data loss, equipment
malfunction, equipment heating, and damage. The noise on
data transmission line is also related with harmonics. At some
special systems, harmonic current components may cause effect
of carrier signals and thus interfere other carrier signals. As a
result, some facilities may be affected. Once harmonics source
enters computer instruments, the data stored in the computer
may be lost up to ten times. Moreover, harmonics may also
cause transformer and capacitor over heating, thus reducing
their working life. The resulting rotor heating and pulsating
output torque will decrease the driver’s efficiency [1]–[8].
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The presence of power system interharmonics has not only
brought many problems as harmonics but produced additional
problems. For instance, there are thermal effects, low-frequency
oscillation of mechanical system, light and cathode-ray-tube
flicker, interference of control and protection signals, high-
frequency overload of passive parallel filter, telecommunica-
tion interference, acoustic disturbance, saturation of current
transformer, subsynchronous oscillations, voltage fluctuations,
malfunctioning of remote control system, erroneous firing of
thyristor apparatus, and the loss of useful life of induction mo-
tors. These phenomena may even happen under low amplitude
[5], [9]–[12].

Conventionally, a discrete Fourier transform (DFT) method
is efficient for signal spectrum evaluation because of the sim-
plicity and easy implementation. An improper use of DFT-
based algorithms can, however, lead to multiple interpretations
of spectrum [12]–[14]. For example, if the periodicity of DFT
data set does not match the periodicity of signal waveforms, the
spectral leakage and picket-fence effect will occur. Since the
power system frequency is subject to small random deviations,
some degree of spectral leakage cannot be avoided. A number
of algorithms, e.g., short-time Fourier transform [15], least
square approach [16]–[18], Kalman filtering [19], [20], artificial
neural networks [14], [21], have been proposed to extract
harmonics. The approaches may either suffer from low solution
accuracy or less computational efficiency. None is reported
to perform well in interharmonic identification under system
frequency variations although each demonstrates its specific
advantages.

The presence of interharmonics strongly poses difficulties
in modeling and measuring the distorted waveforms. This is
mainly due to the following: 1) very low values of interests
of interharmonics (about one order of quantity less than for
harmonics); 2) the variability of their frequencies and ampli-
tudes; 3) the variability of the waveform periodicity; and 4) the
great sensitivity to the spectral leakage phenomenon. In recent
years, the effect caused by interharmonics is apparently being
worsened. Therefore, currently, the development of accurate in-
terharmonics measurement has attracted great attention in both
industry and academics. This point of view is fully supported
by exploring a number of publications (2007–2010) related to
this field [22]–[40]. However, the published outcome may still
suffer from low accuracy, long computational time, complexity,
or measurement limitation. Accordingly, it is still an essential
research issue to be carried on in this field.
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International Electrotechnical Commission (IEC) 61000-4-7
established a well-disciplined measurement method for
harmonics/interharmonics. This standard has been recently re-
vised to add methodology for measuring interharmonics [41].
The key to the measurement of both harmonics and interhar-
monics in the standard is the utilization of a 10- or 12-cycle
sample window upon which to perform the Fourier transform.
However, the spectrum resolution with 5 Hz is not sufficiently
precise to reflect the practical interharmonic locations for
both 50- and 60-Hz systems. This paper presents harmonic/
interharmonic identification using a DFT-based RGPM ap-
proach, which retains the merits of a DFT analysis and ex-
tends to interharmonic identification under system frequency
variation environments. This paper is organized as follows:
Section II gives a background of the concept of system
harmonic/interharmonic measurement. Section III presents the
proposed RGPM algorithm. In Section IV, the model validation
with a numerical example is demonstrated. Performance results
under system frequency drift is included and discussed. Con-
clusion is given in Section V.

II. BACKGROUND OF SYSTEM

HARMONIC/INTERHARMONIC MEASUREMENT

A. Definition of Harmonic/Interharmonic

The integral multiple of alternating current (ac) system fun-
damental frequency is defined as harmonics of voltage or cur-
rent signals. On the other hand, interharmonics is nonintegral
multiple of ac system fundamental frequency, defined by IEC-
1000-2-1 as follows [42].

“Between the harmonics of the power frequency voltage and
current, further frequencies can be observed, which are not
an integer of the fundamental. They can appear as discrete
frequencies or as a wide-band spectrum.”

The definition of harmonic/interharmonic is illustrated as
follows.

1) Harmonic: fh = h × f , where h is an integer and greater
than 0.

2) Direct current (dc): fh =0 Hz (fh =h × f , where h=0).
3) Interharmonic: fi �= h × f , where h is an integer and

greater than 0.
4) Subharmonic: f > fh > 0.
Note that f is the fundamental power system frequency, and

subharmonic is a special case of interharmonic components.

B. Fundamental Concept of System
Harmonics/Interharmonics

By Fourier theory, any repetitive distorted (nonsinusoidal)
waveform is(t) can be expressed as Fourier series of various
sinusoidal frequencies (harmonics/interharmonics)

is(t) =
∞∑

k=∞
Is(kω0)ejkω0t (1)

Is(kω0) =
1
T

t+T∫
t

x(t)e−jkω0tdt (2)

where ω0(= 2π/T = 2πf) is the fundamental angular fre-
quency, and Is(kω0) is the kth coefficient.

Suppose the waveform is(t) is sampled as N discrete points
using sampling rate fs. With the digital signal processing
technology, the continuous signal is(t) can be converted to a
discrete signal is[n] and then can be transformed by the DFT as

Is[k] =
1
N

N−1∑
n=0

is[n]W kn
N (3)

where Is[k] denotes the DFT of is[n] at frequency fk, i.e., fk =
k/T , and WN = exp(j2π/N).

The inverse DFT, which allows us to recover the signal from
its spectrum, is given by

is[n] =
N/2−1∑

k=0

Is[k]W−kn
N . (4)

Assume that is[n] is the periodic waveform with period T ,
and the angular frequency resolution Δω is determined by the
truncated signal length and defined as follows:

Δω =
2π

T
. (5)

If the data sampling length is chosen as p (p > 1 and is an
integer number) periods, Δω can be rewritten as follows:

Δω =
2π

pT
=

ω0

p
. (6)

According to (6), Δf can be expressed as

Δf =
1

pT
=

1
pNsTs

=
1

NTs
=

fs

N
(7)

where Ns
Δ= N/p and Ts

Δ= 1/fs.
For instance, choose 10 60-Hz signal cycles for Fourier

transform, and Δf =60/10=6 Hz. Accordingly, 6, 12,
18 Hz, . . . will appear in the spectrum, known as interhar-
monics. Furthermore, the executed time is Tf =N · 1/fs if the
signal is sampled N points by sampling rate fs. Therefore, the
Fourier fundamental period is expressed as Tf , i.e., Tf =1/Δf .

C. Concept of Group Harmonic

The measurement of interharmonics is difficult with results
depending on many factors. Based on the so-called “group”
suggested by IEC 61000-4-7, the concept of group harmonic
is introduced as follows [41].

By the Parseval relation in its discrete form, the power of
waveform P can be expressed as [43], [44]

P =
1
N

N/2−1∑
n=0

is[n]2 =
N/2−1∑

k=0

Is[k]2. (8)

Both positive and negative values of spectral components
are considered to transform the frequency-dominant-sampled
signal into a periodic time-dominant signal. Therefore, actual
signals spectral components relevant to symmetrical frequen-
cies are complex conjugates of each other. However, most
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Fig. 1. IEC subgrouping of “bins” for both harmonics and interharmonics
(graph reproduced from [5]).

real-world frequency analysis instruments display only the
positive half of the frequency spectrum because the spectrum of
a real-world signal is symmetrical around dc. Thus, the negative
frequency information is redundant.

For this reason, the power at the discrete frequency fk can be
expressed as [44]

P [fk] = Is[k]2 + Is[N − k]2 = 2Is[k]2 (9)

where k = 0, 1, 2, . . . , N/2 − 1.
The root-mean-square value of the harmonic amplitude at the

discrete frequency fk is

Ih[fk] =
√

P [fk] =
√

2Is[k]. (10)

The power of the harmonic at fk may disperse over a fre-
quency band around the fk due to the spectral leakage. Hence,
the total power of harmonics within the adjacent frequencies
around fk can be restored into a “group power” [13]. Each
“group power,” i.e., P ∗[fk], can be collected between fk−Δk

and fk+Δk as follows:

P ∗[fk] =
+τ∑

Δk=−τ

(Ih[fk+Δk])2 (11)

where τ is an integer number and denotes the group bandwidth.
Consequently, each harmonic amplitude can be estimated as

I∗s [fk] =
√

P ∗[fk]. (12)

An interesting way to view this phenomenon is to observe
the DFT implementation, shown in Fig. 1. Most leakages can
be collected into one group and are considered as though they
were all at the dominant harmonic frequency. The amplitude of
interharmonics (and/or subharmonics) can be thus identified.

III. PROPOSED RGPM ALGORITHM

The power-line waveform s(t) (voltage/current) is sampled
using the sampling rate fs(= 1/Ts), which has the fundamental
frequency fd, as follows:

s(n) = s(t) |t=nTs
, n = 0, 1, 2, . . . , N − 1 (13)

where N is the sampled point of Fourier fundamental period Tf .

Fig. 2. Amplitude distribution around the dominant component.

In general, the distorted signal can be composed of three
parts, as follows:

s(n) = sd(n) + sh(n) + si(n) (14)

where sd(n) is the fundamental component, sh(n) is the har-
monic components, and si(n) represents the interharmonic
components.

A. GBP Algorithm

Length N of the sampled window for the DFT analysis
plays the critical point in determining if the spectrum can be
accurately achieved. Based on the empirical observation using
the DFT, Fig. 2 indicates that the second stronger amplitude is
found to be located at the right side of the dominant component,
i.e., Ih[fk+1] > Ih[fk−1], in case of overlong truncated win-
dow. On the contrary, the second stronger amplitude is located
at the left side of the dominant component, i.e., Ih[fk+1] <
Ih[fk−1], the truncated-window length is insufficient for the
DFT analysis. Accordingly, the proposed RGPM approach is
to develop the mechanism for correcting the window length ac-
cording to the situation on the dispersed energy. This proposed
RGPM method in deed extends the “group” concept that has
been mentioned by IEC 61000-4-7 and some papers [5], [13],
[44], [47].

The total dispersed power, i.e., P ∗∗[fk], around the dominant
frequency is defined as

P ∗∗[fk] =
+τ∑

Δk=−τ

(Ih[fk+Δk])2 − (Ih[fk])2 (15)

where it denotes the dispersed bandwidth power, excluding the
dominant component.

Based on the above concept, once the exact sampled win-
dow length N is found, P ∗∗[fk] will reach the predefined
minima power value Pmin. To guarantee the convergence of
P ∗∗[fk] with the procedure repetition, N should be therefore
decreased if Ih[fk+1] > Ih[fk−1], and N should be increased
if Ih[fk+1] < Ih[fk−1]. The procedure will be repeated until
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Fig. 3. Flowchart of the proposed GBP algorithm.

the minima power value is achieved; more details are shown
in Fig. 3.

1) Set fs = 5 kHz, and N = 1000 for sampling the power-
line signal.

2) Implement the DFT.
3) If Ih[fk+1] > Ih[fk−1], N = N − 1. Otherwise, go to the

next step.
4) If Ih[fk+1] < Ih[fk−1], N = N + 1. Otherwise, go to the

next step.
5) Check if P ∗∗[fk] ≤ Pmin. If yes, the iteration loop stops,

and determine the updated N . The fundamental fre-
quency f ′

d and amplitude A′
d can be thus obtained. Oth-

erwise, go back to step 2 to repeat the procedure until
P ∗∗[fk] ≤ Pmin.

B. Proposed RGPM Algorithm

In Fig. 4, the proposed recursive group-harmonic power
minimizing (RGPM) algorithm that integrated with the group-
harmonic bin power (GBP) algorithm is demonstrated as
follows.

1) Determine the new Δf ′ = fs/N
′ using the GBP method,

and find the correct fundamental frequency f ′
d and its

Fig. 4. Flowchart of the proposed RGPM algorithm.

respective amplitude A′
d. Accordingly, the fundamental

frequency signal s′d(n) and its harmonic signals s′h(n)
can be obtained as follows:

s′(n) = s(t)
∣∣∣t= n

f′
s

= s′d(n) + s′h(n) + s′i(n),

n = 0, 1, 2, 3, . . . , N ′ − 1 (16)

2) Reconstruct the s′d(n) and s′h(n) and form a composed
waveform. Therefore, the new waveform that only con-
tains interharmonic components without s′d(n) and s′h(n)
can be obtained as follows:

s′i(n) = s′(n) − [s′d(n) + s′h(n)] (17)

3) Assume the major interharmonic component (biggest
amplitude) as the fundamental component.

4) Repeat steps 1)–3) until all major interharmonics are
regained.
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IV. MODEL VALIDATION WITH A NUMERICAL EXAMPLE

The proposed RGPM algorithm has been tested by the syn-
thesized line signal (voltage/current) to verify the effectiveness
of harmonic/interharmonic analysis. The following example is
used to illustrate the harmonic analysis of a distorted waveform
[45]–[47]:

s(t)= sin(2πfdt + 23◦) + 0.25 sin(2π · 3 · fd · t + 68◦)
+ 0.3 sin(2π · 5 · fd · t + 16◦)
+ 0.3 sin(2π · 128 · t + 78◦)
+ 0.15 sin(2π · 243.2 · t + 94◦) + 0.07 sin(2π · 376 · t)

(18)

where fd = 60.32 Hz is the fundamental frequency.
Generally, the system frequency drift is a concern in power

systems because it may slightly vary from time to time due
to the change of system loads. This effect, in deed, influ-
ences the traditional DFT spectrum analysis. As mentioned, the
line signal has a fundamental frequency, i.e., 60.32 Hz, with
0.32-Hz drift and a scaled amplitude of 1 V. The third and fifth
harmonic components are included in the synthesized wave-
form to present a possible distorted waveform situation. Nonin-
teger components, i.e., interharmonic, such as 128, 243.2, and
376 Hz are to be considered, reflecting a possible polluted-line
case. Note that the aforementioned harmonics/interharmonics
are assigned different magnitudes and phases.

A. Selection of Group Bandwidth τ and Minima Power
Value Pmin

The power of the harmonic at fk may disperse over a fre-
quency band around fk due to spectral leakage, etc., when the
DFT is used as a spectrum analysis tool. Therefore, each “group
power” should be collected between fk−τ and fk+τ to ensure
satisfactory spectrum results. Obviously, the larger group band-
width τ can restore all leakages and regain the actual amplitude/
frequency. However, with a large bandwidth, the “group
power” may include considerable harmonic contents at distant
frequencies because neighboring nominal harmonics may be
widely dispersed. Additionally, the extracted frequency may be
slightly apart from the actual value with a larger τ due to the
influence of neighboring harmonic contents. As a consequence,
group bandwidth τ should be chosen as large as possible for
obtaining an accurate amplitude but small enough to avoid the
overlap between two neighboring harmonic groups. Based on
the results by this proposed RGPM model, group bandwidth τ
is suggested to be chosen as τ = 4 to reach the compromise.

On the other hand, minima power value Pmin is a crucial fac-
tor to stop the iteration loop of the proposed GBP algorithm. The-
oretically, Pmin should be chosen as small as possible to achieve
a more accurate result but relatively taking more iteration loops.
Therefore, Pmin is set as 0.001 with compromise in computa-
tional time, and the outcome is still satisfactory in this paper.

B. Spectrum Analysis

According to (17), we set fs = 5 kHz, N = 1000, i.e., Δf =
5 Hz, and the waveform is shown in Fig. 5. As shown in Fig. 6,

Fig. 5. Distorted waveform.

Fig. 6. Spectrum of the distorted waveform using the DFT.

Fig. 7. Convergent curve of the dispersed power at the harmonic components.

a considerable spectrum leakage occurs using the DFT so that
the result is unable to represent its actual spectrum.

Based on the proposed RGPM algorithm, the following steps
are illustrated to find the true harmonics/interharmonics.

Step A—Measurement of Fundamental and Integer Har-
monics With a 0.32-Hz Frequency Drift: In this case, the
fundamental frequency component, including third and fifth
harmonics, is considered to have a 0.32-Hz variation. The
dispersed power of the harmonics over around the frequency
band is significantly reduced from 0.0364 to 0.00011 within
only six iteration loops, as shown in Fig. 7. Fig. 8 indicates
that each harmonic is approaching toward its true amplitude



LIN: POWER HARMONICS AND INTERHARMONICS MEASUREMENT USING RGPM ALGORITHM 1189

Fig. 8. Amplitude tracking curve of the harmonic components.

Fig. 9. Harmonic spectrum of the waveform using the RGPM algorithm.

Fig. 10. Waveform with three interharmonics only.

step by step. The amplitudes of the fundamental, third, and fifth
components are thus obtained as 1.0, 0.25, and 0.3 at the sixth
iteration loop from 0.99, 0.24, and 0.25 at the first iteration loop,
respectively. Additionally, the fundamental frequency is found
as 60.32 Hz, matching the true one. Fig. 9 confirms that every
harmonic spectrum, excluding interharmonics, has achieved its
real value.

Step B—Measurement of the Interharmonic at 243.2 Hz:
In this stage, all harmonic components acquired at Step A
are excluded in the new waveform so that the interharmonic
at 243.2 Hz is assumed as the fundamental component. The
waveform and its spectrum using the DFT are shown in Figs. 10
and 11, respectively.

Fig. 11. Spectrum of the waveform using the DFT with three interharmonics
only.

Fig. 12. Convergent curve of the dispersed power at the 243.2-Hz
interharmonic.

Fig. 13. Amplitude tracking curve of the 243.2-Hz interharmonic.

The dispersed power of the supposed fundamental band (in-
terharmonic at 243.2 Hz) is considerably reduced from 0.0056
to 0.000012 within eight iteration loops, shown in Fig. 12.
Accordingly, its amplitude is obtained as 0.15 from 0.12, and
the 243.2-Hz component is thus confirmed, as shown in Figs. 13
and 14, respectively.

Step C—Measurement of the Interharmonic at 128 Hz: In
this stage, all harmonics and 243.2-Hz interharmonic are ex-
cluded in the new waveform, as shown in Fig. 15. Therefore,
only two interharmonics, i.e., 128 and 376 Hz, remained, and
its spectrum using the DFT is shown in Fig. 16.
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Fig. 14. Spectrum analysis using the RGPM algorithm at the 243.2-Hz
interharmonic.

Fig. 15. Waveform with two interharmonics only.

Fig. 16. Spectrum of the waveform using the DFT with two interharmonics
only.

Similarly, the dispersed power of the supposed fundamental
band (interharmonic at 128 Hz) is approaching toward to zero
from 0.005 within 17 iteration loops, as shown in Fig. 17.
Accordingly, its amplitude is obtained as 0.1 from 0.076, and
the 128-Hz component is therefore confirmed, as shown in
Figs. 18 and 19, respectively.

Step D—Measurement of the Interharmonic at 376 Hz: In
the last stage, all harmonics, i.e., 243.2- and 128-Hz interhar-
monic, are excluded in the new waveform, as shown in Fig. 20.
Therefore, only one interharmonic (376 Hz) remained, and its
spectrum using the DFT is shown in Fig. 21.

Fig. 17. Convergent curve of the dispersed power at the 128-Hz interharmonic.

Fig. 18. Amplitude tracking curve of the 128-Hz interharmonic.

Fig. 19. Spectrum analysis using the RGPM algorithm at the 128-Hz
interharmonic.

Fig. 20. Distorted waveform containing 376-Hz interharmonic only.
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Fig. 21. Spectrum of the distorted waveform using the DFT for the 376-Hz
interharmonic only.

Fig. 22. Convergent curve of the dispersed power at the 376-Hz
interharmonic.

Fig. 23. Amplitude tracking curve of the 376-Hz interharmonic.

The dispersed power of the supposed fundamental band
(interharmonic at 376 Hz) is quickly going down to almost
zero from 0.00039 within only four iteration loops, as shown
in Fig. 22. As a result, its amplitude is obtained as 0.07 from
0.065, and the 376-Hz component is thus confirmed, as shown
in Figs. 23 and 24.

C. Comparison Between the DFT Analysis and the Proposed
RGPM Model

The comparison between the DFT and the RGPM algorithm
is listed in Tables I–VI, where τ is chosen as 4. Obviously,
it is found that the dispersed amplitudes around the fk, i.e.,

Fig. 24. Spectrum analysis using the RGPM algorithm at the 376-Hz
interharmonic.

TABLE I
AMPLITUDE COMPARISON OF THE DFT AND THE

RGPM AT k = 12 (FUNDAMENTAL HARMONIC)

TABLE II
AMPLITUDE COMPARISON OF THE DFT AND THE

RGPM AT k = 36 (THIRD HARMONIC)

TABLE III
AMPLITUDE COMPARISON OF THE DFT AND THE

RGPM AT k = 60 (FIFTH HARMONIC)

TABLE IV
AMPLITUDE COMPARISON OF THE DFT AND THE

RGPM AT k = 49 (243.2-Hz INTERHARMONIC)

TABLE V
AMPLITUDE COMPARISON OF THE DFT AND THE

RGPM AT k = 26 (128-Hz INTERHARMONIC)

TABLE VI
AMPLITUDE COMPARISON OF THE DFT AND THE

RGPM AT k = 75 (376-Hz INTERHARMONIC)
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fk−4 − fk−1 and fk+1 − fk+4, are too apparent to be ignored
by the DFT. On the other hand, the proposed RGPM model
can effectively reduce all dispersed power to almost zero
and thus guarantee true amplitudes/frequency to be achieved.
Tables I–III indicate that the amplitudes of the fundamental,
third, and fifth harmonics at fk by the DFT are calculated as
0.99, 0.24, and 0.25, respectively. With the proposed RGPM
method, their actual amplitudes can be accurately obtained as
1.0, 0.25, and 0.3. In Table IV, the amplitude of the 243.2-Hz
interharmonic using the DFT at fk is computed as 0.12, and
the RGPM can achieve its actual value, i.e., 0.15. Similarly,
Tables V and VI reveal that small distortion caused by 128-
and 376-Hz interharmonics at fk can be accurately evaluated as
0.1 and 0.07, respectively, by the RGPM.

D. Discussion About Stability and Measuring Time Length of
Respective Signal

As we know, it cannot avoid spectral leakage caused by
uncertainty between frequency resolution and measuring time
length using the DFT. As a result, normally, an appropriate win-
dow, such as Hamming and Blackman windows, is used to re-
duce spectral leakage with compromise in frequency resolution.
However, it is not applicable in the presence of interharmonics
due to some difficulties, e.g., variability in their frequencies and
amplitudes or waveform periodicity.

In practice, the change of respective signal may result in its
spectrum somewhat broad. As shown, a considerable spectrum
leakage always occurs using the DFT so that its spectrum
cannot represent an actual one. This phenomenon has been
fully studied with the proposed RGPM approach that can
retrieve all dispersed bandwidth power, even when the target
line spectra may be nonstationary in their frequencies and
amplitudes. Every interharmonic component that is initially
assumed as the fundamental component can be identified using
the mechanism of the proposed GBP algorithm but requiring
some iterations only. For example, in Section IV-B, the mea-
surement of fundamental and integer harmonics with a 0.32-Hz
frequency drift requires six iteration loops. The measurement
of the interharmonic at 128 Hz needs 17 iteration loops. In
addition, the interharmonics at 243.2 and 376 Hz require eight
and four iteration loops, respectively, to be recognized.

Obviously, the simulation results confirm that the proposed
scheme is capable of performing a fast computation for ex-
tracting accurate interharmonics because it requires only tens
of iteration loops and thus achieves a satisfactory outcome.
Furthermore, the measuring time length of respective signal
is based on the DFT so that only one signal acquisition is
demanded to implement the proposed scheme.

E. Discussion About Industrial Application

The proposed RGPM algorithm is an advanced DFT-based
method for an interharmonic analysis. Accordingly, for the
practical application of the methodology in industry, the RGPM
algorithm can be easily added to such DFT-based measurement
devices that are still currently widely used. Alternatively, the
RGPM algorithm is suitable for online microprocessed imple-

mentation if the DFT is available with input/output interface
capability in the chip.

The interharmonic amplitude and frequency, even phase un-
der different system frequency drifts, may vary in the power
system any time. The RGPM algorithm is quickly adaptive to
any variation of system frequency in power systems. Conse-
quently, most measurement devices that have some inherent
errors caused by interharmonic leakages can be fixed by using
the RGPM algorithm, and the robustness of the algorithm can
be thus guaranteed.

V. CONCLUSION

Although the DFT has certain limitations in the har-
monic analysis, it is still widely used in the industry to-
day. The harmonic/interharmonic identification using a DFT-
based RGPM algorithm has been developed to be accurately
and efficiently extracted. The test results confirm that the
proposed RGPM method can guarantee the tracking of each
harmonic/interharmonic amplitude to be convergent at every
iteration loop by the GBP algorithm. There is no theoretical re-
striction in the locations of the interharmonic components while
group bandwidth τ of each harmonic/interharmonic should
be appropriately chosen. Moreover, the RGPM methodology
has been successfully implemented by a Laboratory Virtual
Instrumentation Engineering Workbench programming so that
it can be easily extended to other software packages such as
a microprocessor for online measurement. Additionally, the
proposed RGPM can provide an advanced improvement for
most measurement devices with some inherent errors because
of the spectrum leakages caused by harmonics/interharmonics.
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