
A

W
D

a

A
R
R
A
A

K
S
T
C
M
D
D
T

1

a
[
t
m
d
e
m

c
n
[
s
e

D
i
i
H
t

1
h

Applied Soft Computing 12 (2012) 3141–3157

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

 self-organizing map for transactional data and the related categorical domain

en-Chung Liao, Chung-Chian Hsu ∗

epartment of Information Management, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, Taiwan, ROC

 r t i c l e i n f o

rticle history:
eceived 5 February 2012
eceived in revised form 12 June 2012
ccepted 19 June 2012
vailable online 30 June 2012

eywords:
elf-organizing map (SOM)
ransactional data
ategorical data

a b s t r a c t

After projecting high dimensional data into a two-dimension map via the SOM, users can easily view
the inner structure of the data on the 2-D map. In the early stage of data mining, it is useful for any
kind of data to inspect their inner structure. However, few studies apply the SOM to transactional data
and the related categorical domain, which are usually accompanied with concept hierarchies. Concept
hierarchies contain information about the data but are almost ignored in such researches. This may
cause mistakes in mapping. In this paper, we propose an extended SOM model, the SOMCD, which can
map the varied kinds of data in the categorical domain into a 2-D map and visualize the inner structure
on the map. By using tree structures to represent the different kinds of data objects and the neurons’
prototypes, a new devised distance measure which takes information embedded in concept hierarchies
ixed data
ata visualization
istance measure
ree-growing adaptation

into consideration can properly find the similarity between the data objects and the neurons. Besides the
distance measure, we base the SOMCD on a tree-growing adaptation method and integrate the U-Matrix
for visualization. Users can hierarchically separate the trained neurons on the SOMCD’s map into different
groups and cluster the data objects eventually. From the experiments in synthetic and real datasets, the
SOMCD performs better than other SOM variants and clustering algorithms in visualization, mapping and
clustering.
. Introduction

The self-organizing map (SOM) is excellent in mapping and visu-
lizing high dimensional data since it was proposed by Kohonen
1,2]. The SOM projects high dimensional data objects into a lat-
ice of neurons, typically arranged on a two-dimension map; in the

eanwhile, the topological order among the data objects in the
ata space can be preserved on the 2-D map. Users of the SOM can
asily view the inner structure of high dimensional data on a 2-D
ap.
Based on the use of batch-SOM training and the median asso-

iated with each neuron, the SOM can be applied to handle
on-vector data with a predefined distance measure or similarity
3–5]. Later, the online SOM algorithms for non-vector data such as
ymbol string [6–8], graph [9], transactions [10], time series [11],
tc. had been developed.

No matter what kinds of data, once they are projected into a 2-
 map by the SOM, users can easily investigate and visualize their

nner structures on the map. In the early stage of data mining, it

s important for any kind of data to inspect their inner structure.
owever, very few studies apply the SOM to transactional data and

he related categorical domain.

∗ Corresponding author. Tel.: +886 5 5342601x5326; fax: +886 5 5312077.
E-mail address: hsucc@yuntech.edu.tw (C.-C. Hsu).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.06.014
© 2012 Elsevier B.V. All rights reserved.

The categorical domain we mean include any kind of data which
contain categorical or nominal values. Transactional data, categor-
ical data, and mixed data are the three usual kinds of data which
belong to the categorical domain. Each data instance in transac-
tional data is a set of items and each item is a categorical or nominal
value. In the case of categorical data, each data instance has a
fixed number of categorical attributes. Each categorical attribute
has some possible categorical values, but only one of the possi-
ble values will be the attribute value in any data instance. If the
attributes of each data instance mix with categorical and numerical
ones, it is the so-called mixed data.

Since categorical values have no geometrical meanings, it is not
easy to inspect their data structures or how they distribute via the
data mining tools which are usually used in numerical data well.
So far, few SOM studies had been proposed to mine the categorical
domain. The TCSOM [10] can cluster transactional data but provides
no map for users to view the inner structure of transactional data,
the GSOM [12] can inspect the inner structure of mixed data but
cannot view their hierarchical structures more precisely, the SCM
[6,7] can handle transactional data but ignores “relevancy infor-
mation” between items, which we explain later. The above SOM
models have some disadvantages in mining the categorical domain.
When we mine the categorical domain, transactional data are
especially difficult to handle since transactional data are non-vector
set type data. Unlike categorical and mixed data, transactional data
are unstructured data. One of the most typical transactional data

dx.doi.org/10.1016/j.asoc.2012.06.014
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:hsucc@yuntech.edu.tw
dx.doi.org/10.1016/j.asoc.2012.06.014

3 oft Computing 12 (2012) 3141–3157

i
t
s
s
c
p
s

n
c
c
i
p
(
a
d
r
s
t
t
I
t

c
[
a
h
w
e
d

i
i
o
i
i
p
o
s
[
a
h
a

p
n
t
t
r
m
v
v
n
e
t
B
a
v

S
i
c
c
i
a
k

mi(s)
mi(s+1)

x(s)

d

hci *d (1-hci)*d
142 W.-C. Liao, C.-C. Hsu / Applied S

n our daily life is the market basket data, which has its impor-
ance in any marketplace. The market basket data of any shopping
tore always reveal the consumers’ shopping behaviors and per-
onal favorites. Clustering the market basket data can separate the
onsumers into different segments, so the managers of the shop-
ing store can adopt different marketing strategies for the different
egments of the consumers to maximize their profits.

In many application domains, transactional data are accompa-
ied with a concept hierarchy or a taxonomy tree. The product
atalog of a shopping store is a typical example of a concept hierar-
hy. Concept hierarchies are tree structures [13]. All of the possible
tems in a transactional database form the leaf nodes of the accom-
anying concept hierarchy. The non-leaf nodes are the categories
or concepts) of all the possible items. The relevancy information
mong all of the possible items in the transactional data is embed-
ed in the concept hierarchy. Items of the same category are more
elevant than those of items in different ones. For example, in a
hopping mall, the apple juices are more relevant to the grape juices
han the apples, since the apple juices and the grapes juices belong
o the same juice category and the apples are in the fruit category.
f the apple juices are in shortage on the shelf, customers normally
end to take a grape juice rather than an apple.

So far, as we know, there are no SOM models that consider con-
ept hierarchies when handling transactional data. Neither the SCM
6,7] nor the TCSOM [10] considers the existing of concepts hier-
rchies. The GSOM [12] and the GViSOM [14] were proposed to
andle mixed-type data. Although they take concept hierarchies,
hich are associated with each categorical attribute, into consid-

ration, they can not apply to transactional data well since their
ata objects are fixed dimensional vectors but not sets.

Even most of transactional data clustering algorithms [15–18]
gnore the existing of concept hierarchies. The relevancy between
ndividual items is never considered in most of the algorithms. Most
f them put the transactions which have more items in common
nto the same cluster. It may cause that the transactions whose
tems are different but relevant are considered as different kinds of
atterns. For example, if we have two transactions t1 = {apple juice,
range, coke} and t2 = {pesi, grape juice, apple} that come from a
hopping mall. Most of the clustering methods, like Large Items
16], CLOPE [17], SCALE [18,19], would not put these two trans-
ctions into the same cluster, since these two transactions do not
ave any items in common. It is clear that these two transactions
re similar since their items are highly relevant.

In this paper, an extended SOM model, named as SOMCD, is
roposed for the categorical domain, which is usually accompa-
ied with concept hierarchies. Different kinds of data, including
ransactional data, categorical data, and mixed data, all related
o the categorical domain can be projected into a lattice of neu-
ons arranged on a two-dimensional map by the SOMCD; in the
eanwhile, the topological order of the data can be preserved and

isualized on the 2-D map. By using tree structures to represent the
aried kinds of data objects and the prototypes of the neurons, a
ew devised distance measure can take the relevancy information
mbedded in the concept hierarchies into consideration and find
he similarity between the data objects and the neurons properly.
esides the new devised distance measure, we base the SOMCD on

 tree-growing adaptation method and integrate the U-Matrix for
isualization.

This study has the following contributions. The first one is the
OMCD extends the application scope of the conventional SOM to
nclude the transactional data which are accompanied with a con-
ept hierarchy. The second is a distance function is devised for the

ategorical domain such that the relevancy information embedded
n concept hierarchies can be measured. The third is the SOMCD is

 total solution in projecting, visualization, and clustering for any
ind of data which are related to the categorical domain.
Fig. 1. Adaptation of reference vector.

The rest of this paper is organized as follows. In Section 2, the
SOM and some extended models are reviewed. Section 3 gives an
abstract data structure to represent the varying types of data all
related to the categorical domain and a distance function to mea-
sure the dissimilarity between them. Algorithms of the SOMCD
are described in Section 4. Experiments are reported in Section 5.
Conclusions and future works are given in Section 6.

2. Related works

2.1. Self-organizing map

The self-organizing map is an unsupervised neural network
[1,2]. It can project high dimensional data objects into a lattice of
neurons, typically arranged on a 2-D map; in the meanwhile, the
topological order among the data objects in the data space can be
preserved on the 2-D map. The lattice can be rectangular or hexago-
nal. Each neuron has its own reference vector, which belongs to the
same space of the data objects. After learning from input patterns,
the reference vectors of the neurons will reflect the distribution of
the data objects in the data space.

The neurons learn from the input patterns randomly and itera-
tively. In the traditional SOM, there are two key steps whenever an
input pattern is randomly drawn from a dataset. The first one is to
find the best matching unit (BMU) from all of the neurons on the
map. If x is an input pattern, then the best matching unit c is found
as follows.

c = arg min
i

||x − mi||, (1)

where mi is the reference vector of neuron i. That is, among all
the neurons, c is the one which has minimal distance between its
reference vector and x.

The second key step is to adjust the reference vectors of the
neurons which are in the neighborhood of the BMU. Let i be a neuron
which is in the neighborhood of c. The reference vector mi of neuron
i is adjusted by the following equation:

mi(s + 1) = mi(s) + hci(s)[x(s) − mi(s)], (2)

where hci(s) is the neighborhood function, 0 < hci(s) < 1, and s
denotes the current time. The Gaussian kernel is widely used in
the neighborhood function hci(s) as follows:

hci(s) = ˛(s) · exp

(
−
∥∥rc − ri

∥∥2

2�2(s)

)
, (3)

where ˛(s) is the learning rate, 0 < ˛(s) < 1, �(s) is the width of the
Gaussian kernel, and rc and ri are the locations of the neurons c and
i on the map, respectively. Both ˛(s) and �(s) are monotonically
decreasing with time s. From Eq. (2), we have

mi(s + 1) = [1 − hci(s)]mi(s) + hci(s)x(s). (4)
That is, the newly reference vector of neuron i is a linear combi-
nation of mi(s) and x(s). Since [1 − hci(s)] + hci(s) = 1, mi(s + 1) will be
the point on the line segment between mi(s) and x(s) as depicted in
Fig. 1.

W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157 3143

...

z3z2y3y2x2

r

y

z1y1x1

...

z

x3

x

...

catego

a
l∣∣∣∣
T
c

2

d
t
s
S
t
E
i
f
t
i
b
t
i
t
a
t
T
n
c
s

d
a
a
a
m
b
w
w
T
t
h
i
h
a

r
G
c
b
t

i1 i5 i9 i13 i17

Fig. 2. A three-level concept hierarchy. The nodes x, y, and z are the main

Let d =
∣∣x(s) − mi(s)

∣∣ . Then the reference vector of neuron i after
daptation, i.e., mi(s + 1), must be the vector that satisfies the fol-
owing two equations:

mi(s + 1) − mi(s)
∣∣ = hci(s) · d, (5)

mi(s + 1) − x(s)
∣∣ = [1 − hci(s)] · d. (6)

hat is, after adaptation, the reference vector mi is more similar and
loser to x.

.2. SOMs on the categorical domain

Some of the SOM models which can handle the categorical
omain are reviewed in this subsection. The Symbol String Clus-
ering Map (SCM) is an unsupervised clustering method for symbol
trings [6,7]. Symbol strings are composed of symbols. Like the
OM, the SCM has a lattice of nodes on a 2-D map. Each node of
he SCM is associated with a symbol string and a weight vector.
ach symbol of the node string is associated with one coefficient
n the weight vector. Whenever an input symbol string is drawn
rom the dataset and fed to the SCM, the winner node, which has
he maximum activation value, is found. Next, an adaptation step
s followed. For each node in the neighborhood of the winner node,
oth of its node string and weight vector are adjusted according to
he input symbol string, the winner node, the values of the learn-
ng rate and the kernel function at time t. After several times of
raining, the SCM groups the non-null nodes into many clusters
nd separates the clusters by the null nodes on the map. Transac-
ions are symbol strings if their items are considered as symbols.
hus, we can apply the SCM on transactional data. But the SCM does
ot consider any information embedded in the accompanying con-
ept hierarchies of transactional data. The mixed data is beyond the
cope of the SCM.

The TCSOM [10] is a SOM model which can cluster transactional
ata. In the TCSOM, the number of the neurons M must be selected
t the first beginning and the M neurons are the M clusters of trans-
ctional data at the end. The TCSOM treats each transactional data
s a binary vector, and assigns each neuron a weight vector. A nor-
alized dot product norm is devised for measuring the distance

etween input vectors and neurons’ weight vectors. Whenever a
inner neuron is found for each data instance, only the winner’s
eight vector is updated. After scanning the dataset one pass, the

CSOM maps the transactional data into the M neurons. Therefore,
he M clusters are obtained. The TCSOM is efficient but does not
ave a 2-D map, so the visualization ability is lost. The TCSOM also

gnores any information embedded in the accompanying concept
ierarchy of transactional data and is not suitable for mixed data
s well.

The generalizing self-organizing map (GSOM) [12] can properly
eflect the correct topological order of mixed data on a 2-D map. The

SOM associates each categorical attribute with a distance hierar-
hy, a special kind of concept hierarchy. The relevancy information
etween the categorical values of each categorical attribute is cap-
ured by the distance hierarchies, so the GSOM can distinguish the
i36i21 i2 i29 i33

ries; the nodes xis, yis, and zis are the subcategories; the ijs are the items.

similarity between data instances with mixed type values. How-
ever, the GSOM cannot deal with transactional data, since the data
objects are treated as fixed dimensional vectors not sets of items.
Later, the GSOM integrates the ideas from the ViSOM [20] to over-
come the shortage in projection distortion on the map [14]. Like
the GSOM, this new extended SOM, named as GViSOM [14], focus
on mixed data only.

3. Distance function on categorical domain

In this section, we introduce a distance function which can be
used in varied types of data all related to the categorical domain.
Even though missing values occur in data, the distance function
works properly. First of all, we devise a distance function on concept
trees which are the data structures we propose for the varied types
of data. Based on the new devised distance function, the distance
functions on the varied types of data will be given.

3.1. Distance function on concept trees

Let I = {i1, i2, . . ., iM} be a set of M possible items (or categorical
values). Let H be a concept hierarchy of I. It means that H must
be a rooted and labeled tree with all the items of I as its leaves.
The non-leaf nodes of H act as taxonomic roles of the items in I.
The top level non-leaf nodes are the main categories of I, and the
higher level ones are those of subcategories of I. Hence we call the
non-leaf nodes in H as the category nodes and the leaves as the item
nodes. For convenience sake, the root node of H is labeled as r, and
every node in H is considered to have a unique label. For example,
a three-level concept hierarchy is depicted in Fig. 2. If a concept
hierarchy has item nodes without category nodes, we call it as a
type-0 concept hierarchy; otherwise, we call it a type-1 concept
hierarchy. It is obvious a type-1 concept hierarchy contains more
relevancy information between the items than a type-0 one.

Let T be a subtree of H and let a denote a node in T. A value
denoted by gT(a) is given to node a and is called the growth value of
a. The growth value is greater than zero and not greater than one.
When gT(a) = 1, a is said to be fully grown in T. When 0 < gT(a) < 1, a
is partially grown in T. The weight of T, denoted by |T|, is the total
growth values of all the nodes in T, that is, |T| = ˙a∈TgT(a). The edges
in T are only used to connect the nodes in T. In this study, whenever
two adjacent nodes in H are in T, the edge between the two nodes
is in T. If a is a category node in T, the child nodes of a in T must
be also child nodes of a in H. If T contains item nodes in H, these
nodes must be leaves in T. If the root node of T is fully grown, then
T is called a concept tree of H. A concept tree represent a concept,
i.e., the root node of T, has been developed so far. All the nodes in a
concept tree T are the current content of the concept. So, we define
the net weight of a concept tree T, denoted by ||T||, as the weight of

the content of T, that is, the weight of T minus the growth value of
the root node. Thus, we have ||T|| = |T| − 1. If r is in T, T is called an
r-concept tree. In any concept tree, we confine only the root node
and the fully grown category nodes can have child nodes.

3144 W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157

i21i17i4i1

rr

x1

x y

y2

i17

x y

y3y2x1

(b)(a)

F
(

t
i
f
c
u

c
g
t
c

s
i
h
a
t
i
y
w

h
a
l
n
i
f
b

d

w

W

W

a

d
|b) de

N
m
t

ig. 3. Examples of an r-concept tree and a transaction tree. (a) An r-concept tree;
b) the transaction tree T of {i1, i4, i17, i21} with ||T|| = 9.

Let t be a set of items from I. That is, t is a subset of I. In the
erminologies of transactional data, t is called a transaction with its
tems from I. If T is an r-concept tree, and all the leaves of T are
ully grown and exactly equal to the items in t, then T is called the
orresponding transaction tree of t. It can be proved easily that T is
nique.

Based on the concept hierarchy in Fig. 2, an example of an r-
oncept tree is shown in Fig. 3(a). The nodes x, y, and y2 are fully
rown, and the nodes x1 and i17 are partially grown. If we have

 = {i1, i4, i17, i21}, then the transaction tree T with ||T|| = 9, which
orresponds to t, is depicted in Fig. 3(b).

An r-concept tree, like the example in Fig. 3(a), can be repre-
ented as a class of transactions. Any transaction which has the
tem i17 and the items belonging to the subcategories x1 or y2 has a
igh possibility in the class of this concept tree. Besides, the trans-
ctions in the above class have a higher possibility in containing
he items which belong to the subcategory y2 and a less possibility
n containing the items which belong to the subcategory x1, since
2 is more fully grown than x1 in this concept tree. r-Concept trees
ill be used as the prototypes of the neurons in our SOM model.

Before we have a distance function defined on concept trees,
ere are some notations. For any concept tree T, �T(b) is denoted
s the set of all the child nodes of b, and � T(a|b) is denoted as the
argest subtree of T rooted at the node a with b as a’s parent node, if
o ambiguity, b can be ignored. Note that if a is fully grown, � T(a|b)

s a concept tree. Based on the Jaccard’s coefficient1 [13], a distance
unction of any two concept trees T and U with a fully grown node

 as their common root is given as follows:

ist(T, U) = Wdiff(T, U)
W intersect(T, U) + Wdiff(T, U)

, (7)

here

diff(T, U) =
∑

a ∈ �T (b)−�U (b)

|�T (a|b)| +
∑

a ∈ �U (b)−�T (b)

|�U(a|b)|

+
∑

a ∈ �T (b)∩�U (b)

d(�T (a|b), �U(a|b)), (8)

 intersect(T, U)

=
∑

a ∈ �T (b)∩�U (b)

|�T (a|b)| + |�U(a|b)| − d(�T (a|b), �U(a|b))
2

, (9)

nd

(�T (a|b), �U(a|b)) =
{∣∣∣∣�T (a|b)

∣∣− ∣∣�U(a|b)
∣∣∣∣ if �T (a|b) or �U(a

dist(�T (a|b), �U(a|b)) otherwise.
ote that Wdiff(T, U) and Wintersect(T, U) are used to measure the
utual differences and the intersection between T and U, respec-

ively. We explain these two functions in the next example. The

1 Jaccard’s coefficient of any two finite sets A, B is defined as |A∩B|/|A∪B|.
generates to node a,
(10)

Fig. 4. Two r-concept trees and their first level subtrees.

function d(� T(a|b), � U(a|b)) is used to calculate the difference
between the two subtrees � T(a|b) and � U(a|b). If either � T(a|b) or
� U(a|b) degenerates to a node a, we directly calculate their weight
difference as their difference. Otherwise, we recursively use the
dist(·,·) to calculate the distance between � T(a|b) and � U(a|b) as
their difference. In the latter case, we tend to treat � T(a|b) and
� U(a|b) are similar, since both of them are concept trees with a
common fully grown root node a, and can be considered as two
groups of relevant items under the same category a. Thus, we use
distance function to measure their difference instead of using their
weight difference. Usually, the weight difference between � T(a|b)
and � U(a|b) are much bigger than the distance.

We further explain the distance function by an example in
Fig. 4. Suppose T and U are two r-concept trees. From the point
of view of the root nodes, there are three different parts between
T and U. (i) |� T(b|r)|: since � T(b|r) is completely in T and not in U.
(ii) |� U(c|r)| + |� U(d|r)|: since the subtrees � U(c|r) and � U(d|r) are
completely in U and not in T. (iii) dist(� T(a|r), � U(a|r)): although
� T(a|r) and � U(a|r) are two similar subtrees, differences may occur
inside the two subtrees � T(a|r) and � U(a|r). Thus we recursively
use the distance function to measure their differences. Therefore,
by the definition of Wdiff(·,·), the mutual differences between T and
U are the total of the three parts as follows:

Wdiff(T, U) = |�T (b|r)| + |�U(c|r)| + |�U(d|r)|
+ dist(�T (a|r), �U(a|r)). (11)

Again, from the two root nodes’ view, � T(a|r) and � U(a|r) are
in common once their difference has been subtracted. So, by the
definition of Wintersect(·,·), the intersection between T and U is
calculated by the following average:

W intersect(T, U) = |�T (a|r)| + |�U(a|r)| − dist(�T (a|r), �U(a|r))
2

.

(12)

When such a distance function applied on concept trees, it can
measure the differences in their tree structures, since the distance
function recursively compare the structures from their root nodes
to the leaf nodes.

3.2. The distance function on transactional data

Let D = {t1, . . ., tN} be a transactional dataset. Each ti is called a
transaction of D and is a set of distinct items. Assume I = {i1, i2, . . .,

iM} is the set of all the possible items in the transactions of D. Then
each ti is a subset of I. If there exists a concept hierarchy H of I,
then H is called an accompanying concept hierarchy of D. If H is a

type-1 concept hierarchy, we call D a type-1 transactional dataset.
Of course, for each ti in D, there is a corresponding transaction tree
Ti from H.

W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157 3145

y2

a

y1

x1

rrr

x1

y1

b

r

x1

y1

a c

y2

x2

T T
c

x2

T T

r

x1

y1

a
T

b

c
t

d

w
r

a
i
H
a
t
t
l
t
t
t
J
t
t
i
s

h
h
D
t
l
T
s
f

d

I
J

a
S
m

3

w
e
p
o
c
t

A2 ...

r

ApA1

CH1
CH2

CHp

r

vp

v1 v2

(a) (b)

A2 ... ApA1
1 2 3 4 5

Fig. 5. Transaction trees of t1, t2, t3, t4, and t5.

Now, based on the above distance function defined on the con-
ept trees, we can easily give a distance measure between any two
ransactions ti and tj in D as follows:

ist(ti, tj) = dist(Ti, Tj), (13)

here Ti and Tj are the corresponding transaction trees of ti and tj,
espectively.

The distance measures not only the differences between trans-
ctions in their items but also the differences between transactions
n their trees structures. That is, based on the concept hierarchy
, the distance measure takes the relevancy between items into
ccount. We demonstrate the characteristics of the distance func-
ion by the following example. Suppose there are five transactions
1 = {a}, t2 = {b}, t3 = {c}, t4 = {a, c}, and t5 = {a, b} whose items are
eaves of some concept hierarchy, and their corresponding transac-
ion trees are depicted in Fig. 5, respectively. Then, we have dist(t1,
2) = 1/8, dist(t1, t3) = 1, dist(t2, t3) = 1, dist(t1, t4) = 1/2, and dist(t1,
5) = 4/79 by applied the above distance function. If the traditional
accard’s coefficient is used, then the relationship of the items in
he concept hierarchy is ignored, and we have dist(t1, t2) = 1, dist(t1,
3) = 1, dist(t2, t3) = 1, dist(t1, t4) = 1/2, and dist(t1, t5) = 1/2. The sim-
larity among t1, t2, t3, t4, and t5 cannot be identified, since t1 is
imilar to t2 than t3 and much similar to t5 than t2.

If the accompanying concept hierarchy H of D is a type-0 concept
ierarchy, that is H has no category nodes and is a one level concept
ierarchy with all the possible items in D as its leaves, then we call

 a type-0 transactional dataset. This is a special case of the type-1
ransactional data. Let t and u be any two transactions in D, and
et T and U denote the corresponding transaction trees of t and u.

 and U are one level concept trees. If Eqs. (7)–(10) are applied to
uch transactions, the distance between them can be simplified as
ollows:

ist(t, u) =
∣∣�T (r) − �U(r)

∣∣+ ∣∣�U(r) − �T (r)
∣∣∣∣�T (r) ∪ �U(r)

∣∣
= |t − u| + |u − t|

|t ∪ u| = 1 − |t ∩ u|
|t ∪ u| (14)

t is shown that the distance function we give coincides with the
acarrd’s coefficient in this special case.

In the distance calculation of the type-0 transactional data, the
ccompanying concept hierarchy is not important and useless.
ince the concept hierarchy does not provide any relevant infor-
ation among items in the type-0 transactional data.

.3. The distance function on categorical data

In this subsection, the distance function defined in Eqs. (7)–(10)
ill be applied to categorical data. Let D be a dataset with p cat-
gorical attributes A1, A2, . . ., Ap. Suppose each attribute Ai has ri
ossible categorical values and the ri possible values are the leaves
f a concept hierarchy CHi. Then we can create an associated con-
ept hierarchy H, depicted in Fig. 6(a), for the categorical data by
he following rules:
Fig. 6. (a) A concept hierarchy for categorical data and (b) the transaction tree of a
categorical data object (v1, v2, . . ., vp).

• Let A1, A2, . . ., Ap be the level-1 category nodes of H.
• For each category node Ai, grow a concept hierarchy CHi with Ai

as its root.

Let v = (v1, v2, . . ., vp) be a data object in D. Based on the concept
hierarchy H, v can be easily transformed to a transaction tree V as
follows, if v is regarded as a transaction. For each attribute node Ai
in V, there grows a concept tree Vi rooted at Ai. Vi must have vi as
its only one fully grown leave and is just like the tree depicted in
Fig. 6(b). Therefore, the distance function defined in Eqs. (7)–(10)
can be applied to categorical data. Let u be another data object in D
with U as its corresponding transaction tree. Then for each attribute
node Ai in U, there must exist a concept tree Ui rooted at Ai with
ui as its only one leave. Assume dist(Ui, Vi) = di, then the distance
between u and v can be simplified as follows:

dist(u, v) =
∑

di∑
(|Ui| + |Vi| + di)/2

(15)

If no missing values, the maximal distance value is 2p/(|U| + |V| + p),
whenever di = 1 for all i, and the minimal distance value is 0, when-
ever di = 0 for all i. When divided by 2p/(|U| + |V| + p), the distance
values can be normalized. If missing values exist, the distance func-
tion can be applied properly.

If all the concept hierarchies of the categorical attributes are
type-0, we have a type-0 categorical dataset. Otherwise, we have
a type-1 categorical dataset. Type-0 categorical dataset is a spe-
cial case of type-1. For any data object v in the type-0 categorical
dataset, v can be transformed to a two-level concept tree with the p
categorical attributes reserved in the level-1 nodes. In many trans-
actional data clustering algorithms [10,15,17], v is transformed to
a transaction, a set of the categorical values in v, or a binary vector,
the attribute schema is lost.

3.4. The distance function on mixed data

In this subsection, the distance function defined in Eqs. (7)–(10)
will be applied to mixed data. Let D be a mixed dataset with p cat-
egorical attributes A1, A2, . . ., Ap and q numerical attributes B1, B2,
. . ., Bq. Suppose each categorical attributes Ai has ri possible cat-
egorical values and is accompanied with a concept hierarchy CHi.
Then we can create a concept hierarchy H for the mixed data as
follows:

• Let A1, A2, . . ., Ap, B1, B2, . . ., Bq be the level-1 category nodes of
H.

• For each category node Ai, grow a concept hierarchy CHi with Ai
as its root node.

• Each Bi, grow a virtual node bi as its only one leaf node.
Let v = (v1, v2, . . ., vp, vp+1, v p+2, . . ., vp+q) be a data object of D.
Based on the concept hierarchy H, v can be easily transformed to
an r-concept tree V as follows. For each attribute node Ai in V, there
grows a concept tree Vi rooted at Ai with vi as its only one fully

3146 W.-C. Liao, C.-C. Hsu / Applied Soft Co

r

A2 ApA1

v1 v2

...

bq

B2 BqB1

b1 b2

...

g
b

g

w
v
f

g

w
u
w
B
c

a
i
U
p
u

d

4

p
o

4

t
t
o
i
a
t
d
t
v

g

T
a
i

vp

Fig. 7. A transaction tree of a mixed-type data object.

rown leave. For each attribute node Bj in V, j = 1, . . ., q, a child node
j will be grown with the following growth value:

V (bj) = FBj
(vp+j), (16)

here FBj
(.) is the cumulative distribution function (CDF) of the

alues in attribute Bj. The simplest CDF is the uniform distribution
unction, that is,

V (bj) = vp+j − min(Bj)
max(Bj) − min(Bj)

, (17)

here max(Bj), min(Bj) are the maximum and minimum of the val-
es in attribute Bi. The normal distribution function is another CDF
e can use; it depends on the distribution of the values in attribute

j. Thus, the graph of V is depicted in Fig. 7. If no ambiguity, V is still
alled as a transaction tree for the data object v.

Therefore, the distance function defined in Eqs. (7)–(10) can be
pplied to mixed data. Let u be another data object in D with U as
ts corresponding transaction tree. Then for each attribute node in
, there grow a concept tree Ui. Assume dist(Ui, Vi) = di, for i = 1, . . .,
, and dist(Up+j, Vp+j) = ej, for j = 1, . . ., q, then the distance between

 and v can be simplified as follows:

ist(u, v) =
∑

di +∑ ej∑
(|Ui| + |Vi| + di)/2 +∑(gU(bj) + gV (bj) + ej)/2

(18)

. SOMCD

In this section, a SOM model for the categorical domain is pro-
osed. We call it SOMCD. Before we propose the SOMCD, three
perators on concept trees are introduced.

.1. Operators on concept trees

In order to modify concept trees in our SOM model, we extend
hree set operators, union, intersection and difference, on concept
rees with the same root node. Let T and U be two concept trees
f H with the same root node. T ∩ U and T ∪ U are denoted as the
ntersection and the union of T and U, respectively. T − U is denoted
s the difference of T from U. Firstly, T ∩ U is defined as the concept
ree with the nodes in both T and U. Let a be a node in T ∩ U. We
efine gT∩U(a) = min(gT(a), gU(a)). Next, T ∪ U is defined as a concept
ree with the nodes in T or U. Let a be a node in T ∪ U, the growth
alue of a is determined as follows:

T∪U(a) =

⎧⎪⎨
⎪⎩

gT (a) if a ∈ T and a /∈ U

gU(a) if a /∈ T and a ∈ U

max(gT (a), gU(a)) if a ∈ T and a ∈ U

(19)
he tree difference of T from U, T − U, is defined as follows. If a node
 is in T and not in U, a is in T − U and its growth value is gT(a). If a is
n both of T and U and gT(a) > gU(a), then a is in T − U and its growth
mputing 12 (2012) 3141–3157

value is gT(a) − gU(a). Otherwise, a is not in T − U. Thus, if a is a node
in T − U, the growth value of a is determined as follows:

gT−U(u) =
{

gT (a) if a ∈ T and a /∈ U

gT (a) − gU(a) if a ∈ T, a ∈ U, and gT (a) > gU(a)
(20)

The result of T − U could be a forest of subtrees in T and not in U. For
example, if U is a concept tree whose root node r has one partially
grown child node w1, and T is a concept tree whose root node r
has three fully grown child nodes w1, w2 and w3, then T − U would
contain three subtrees of T whose root nodes are those three child
nodes, w1, w2, and w3, of r. They may not be concept trees.

Let T and U be any two concept trees with a common
root node from H, then we have the following properties: (i)
||T ∪ U|| = |U − T| + |T − U| + ||T ∩ U||, (ii) ||T ∪ U|| = ||T|| + |U − T|, and (iii)
If both T and U are one-level concept trees with a common root
node, then, we have

dist(T, U) =
∣∣T − U

∣∣+ ∣∣U − T
∣∣∥∥T ∪ U

∥∥ = 1 −
∥∥T ∩ U

∥∥∥∥T ∪ U
∥∥ . (21)

Follow the definitions of the above three operators, the two prop-
erties (i) and (ii) can be proved. Follow Eqs. (7)–(10) and the
definitions of the three operators, the property (iii) can be proved.
Eq. (21) coincides with the Jaccard’s coefficient.

4.2. SOMCD and its algorithms

In this subsection, we introduce the SOMCD, which can handle
the varied types of data all related to the categorical domain. That
is, the dataset D we use in the SOMCD could be any type of data
in Section 3. No matter which type of data we use, we have an
accompanying concept hierarchy H of D, and each data object in D
can be transformed to a transaction tree.

4.2.1. Initialization phase
The SOMCD is a self-organizing map whose neurons are

arranged in a lattice on a two dimensional map. The lattice can be
rectangular or hexagonal. Instead of using reference vectors as the
prototypes in the conventional SOM, the prototype of each neuron
in the SOMCD is an r-concept tree from the concept hierarchy H.
It is quite different from the other SOM models at this point. Thus,
before learning from input patterns, each neuron in the SOMCD
will be initially assigned an r-concept tree as its prototype. Those
r-concept trees can be randomly generated based on the concept
hierarchy H. For convenient sake, for each neuron, a data object is
randomly drawn from the dataset D, and then its corresponding
transaction tree is simply assigned as the neuron’s prototype.

4.2.2. Training phase
In this phase, the SOMCD learns from input patterns randomly

and iteratively. The input patterns are data objects from the dataset
D. Once a data object randomly drawn from D, the SOMCD learns
from it. The learning process is continued until some criterion is
met. In our later experiments, criterions are usually predefined and
fixed iteration numbers but it is related to the number of neurons
[21,22].

The same as the traditional SOM models, there are two key steps
whenever a data object is given in this training phase. The first

one is to find the best matching unit among all the neurons on
the map. The second is to adapt the prototypes of neurons which
are in a neighborhood of the BMU. In the first step, if t is the data
object randomly chosen from the dataset D and the corresponding

W.-C. Liao, C.-C. Hsu / Applied Soft Co

F

t
f

c

w
i
i

h
o
c
a
h

t
t
i
d
U
t

d

d

w
s
U
t
w
h

o
T
F
t
i
fi
o
s
T
d
p
p
a
s
t

n
t
a
W
t
w
p
t
t

ig. 8. Adaptation of the concept tree Ui(s) of neuron i when T(s) is given at time s.

ransaction tree T of t is fed to the SOMCD, the BMU c is found as
ollows:

 = arg min
i

dist(T, Ui), (22)

here Ui is the concept tree of the ith neuron in the SOMCD. That
s, the BMU is the neuron which has the smallest distance between
ts concept tree and the given transaction tree.

Then followed by the second key step, neurons in the neighbor-
ood of the BMU learn from the data object t. The transaction tree
f t is denoted as T(s) to emphasize the current time is at s. Those
oncept trees of the neurons in the neighborhood of the BMU are
djusted according to T(s) as well as the neighborhood function,
(s).

Let i be a neuron in the neighborhood of the BMU and Ui(s) be
he concept tree of neuron i at the time s. According to the adapta-
ion mechanism of the conventional SOM, which we have described
n Section 2, Ui(s) should be adjusted toward T(s) such that the
istance between them is decreased. That is, if dist(T(s),Ui(s)) = d,
i(s + 1), the concept tree of neuron i after adaptation, must satisfy

he following two equations:

ist(T(s), Ui(s + 1)) = d · (1 − hci(s)), (23)

ist(Ui(s), Ui(s + 1)) = d · hci(s), (24)

here hci(s) is the value of the neighborhood function at the time
. That is, d × hci(s) should be the total adjustment from Ui(s) to
i(s + 1) such that Ui(s + 1) is more similar and closer to the input

ransaction tree T(s). Nevertheless, It is difficult to have Ui(s + 1)
hich exactly satisfy both of Eqs. (23) and (24). The similar case
appens in the study of Günter and Bunke [9].

Now, we describe the way how we adjust the concept tree Ui(s)
f neuron i such that Ui(s + 1) can get more similar to T(s) at time s.
he adaptation method we adopt imitates trees growing in nature.
or convenient sake, the concept trees Ui(s) and T(s) are simplified
o Fig. 8(a) and (c), respectively. The areas filled with little dots
n Fig. 8(a) and (c) are the common parts of Ui(s) and T(s). The area
lled with horizontal lines in Fig. 8(a) represents the tree difference
f Ui(s) from T(s), i.e., Ui(s) − T(s). We call it the negative part of Ui(s),
ince we expect a fraction of this part will be pruned from Ui(s).
he area filled with vertical lines in Fig. 8(c) represents the tree
ifference of T(s) from Ui(s), i.e., T(s) − Ui(s). We call it the positive
art of Ui(s) at this adaptation, since we expect a fraction of this
art will grow up in Ui(s). The input pattern T(s) can be considered
s the total conditions (sunlight, water, temperature, nutrition and
o on) that environment currently provides to trees. Trees follow
he environmental pattern to grow.

Therefore, a reasonable way to adjust the concept tree Ui(s) of
euron i such that Ui(s) can get more similar and closer to T(s) is
o prune a fraction of the negative part from Ui(s) and to grow

 fraction of the positive part in Ui(s). Let Wpos = |T(s) − Ui(s)| and
neg = |Ui(s) − T(s)|. Suppose the fraction which will grow up in Ui(s)

akes a percentage h1 of the positive part and the fraction which

ill be pruned from Ui(s) takes a percentage h2 of the negative
art. Fig. 8(b) represents the concept tree of neuron i after adapta-
ion. Once the percentages h1 and h2 are determined, Wpos × h1 of
he weight of the positive part will grow in Ui(s) and Wneg × h2 of
mputing 12 (2012) 3141–3157 3147

the weight of the negative part will be pruned from Ui(s). We call
Wpos × h1 and Wneg × h2 the positive and the negative adjustment
values, respectively.

Within the positive part, there may contain many subtrees of
T(s) with different weights. If Y is one of the subtrees with weight
|Y|, then Wpos =

∑
Y ∈ T(s)−Ui(s)|Y |. The leaves or nodes starting from

the root node of Y will grow up in Ui(s). It is possible the root node
of Y has partially grown in Ui(s). Totally a fractional weight, |Y| × h1,
of Y will grow in Ui(s). Moreover, the parent node of the root node
of Y is called the growing point of Y in Ui(s).

Similarly, within the negative part, there may contain many sub-
trees of Ui(s) with different weights. If Y is one of the subtrees with
weight |Y|, then Wneg =

∑
Y ∈ Ui(s)−T(s)|Y |. The leaves or nodes of Y

will be pruned from U. Totally, a fractional weight, |Y| × h2, of Y will
be pruned from Ui(s).

In Fig. 9, we illustrate the subtrees in the negative and the posi-
tive parts of a concept tree Ui(s) when an input pattern T(s) is given.
Suppose x1 is partially grown in Ui(s), then the growing points are
the nodes r and w1 in Ui(s), from where the subtrees rooted at w2,
w3, x1, and x2 will grow.

So far, based on the adaptation mechanism we have described,
the adapted concept tree gets similar and closer to the input pat-
tern. However, It is difficult to have Ui(s + 1), which satisfy both of
Eqs. (23) and (24). Thus we take h1 = h2 = hci(s) heuristically and sim-
ply. Although the incurable adaptation error could exist, Ui(s + 1)
gets far away from Ui(s), in the meanwhile Ui(s + 1) gets closer to
T(s).

4.2.3. Adaptation algorithms of SOMCD
Now the entire algorithm of the adaptation step is shown in

Fig. 10. Just as we have mentioned above, a transaction tree T(s)
and the BMU at time s are given as the inputs. At the beginning
of the algorithm, the learning rate ˛(s) and the updating radius
�(s) are recalculated at this step s; and the location of the BMU is
determined on the map. For each neuron i in the neighborhood of
the BMU, Ui(s) is modified according to the input pattern T(s) as
well as the value of the neighborhood function hci(s). During each
modification process, the positive part, the negative part, and the
growing points are determined for neuron i. It is easy to find out
the subtrees in both of the positive and the negative part of Ui(s),
when we traverse the trees nodes of Ui(s) and T(s) from their roots
and recursively compare their child nodes.

Then by using the ManySubtreesGrow algorithm, depicted in
Fig. 11, a fraction of the positive part grows up in Ui. Each sub-
tree in the positive part will grow up under the OneSubtreeGrow
algorithm, which is similar to the ManySubtreesGrow algorithm,
so we omit it. Similarly, by using the ManySubtreesPrune algo-
rithm, which is depicted in Fig. 12, a fraction of the negative part is
pruned from Ui. Each subtree in the negative part is pruned by the
OneSubtreePrune algorithm, we omit it, too.

4.3. Visualization of the SOMCD

The visualization of the SOMCD is based on the U-Matrix [23,24].
The 2-D map of the SOMCD is displayed by an m by n neural units
with a U-Matrix as its background. In a U-Matrix, the gray level
in each neural unit represents the average distance between its
own prototype and the prototypes of its nearest neighboring units.
The larger the distance is, the darker the gray color is. The units of
darker gray form a boundary of the lighter gray areas. It is reason-
able the units with higher similarity in their prototype will gather

in some lighter gray area. Therefore, we expect the input patterns
with higher similarity will be projected into some lighter gray area.

Via the U-Matrix, we can investigate the hierarchical relations
between the trained units and of course the original data instances

3148 W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157

Fig. 9. The subtrees in the negative and the positive part of a concept tree Ui(s) when an i
subtrees in the negative part. (d) The subtrees in the positive part. Since the node x1 in Ui

Prototy peAdapt ation(T, BMU, s)

// Input: Input patt ern T, BMU, training time s;

// Output : Adapted prototypes of the neighb oring neur ons

around the BMU;

Decreas e α(s) mon oto nic ally with s;

Decreas e σ(s) monotonically with s;

Let (x, y) be the loc ation of th e BMU on the map;

Let N(x, y) be the neig hborhood cente red at (x, y)

within a specified range, σ(s);

For each neu ron i in N(x, y)

Let positive link th e subtrees in T-Ui;

Let growPoin ts link the nodes in Ui that new

branches will gr ow;

Let negativ e link th e sub tre es in Ui -T;

Let (u,v) be the loc ation of i on the map;

Let r= dist((u, v), (x, y)); // Eucli dean distance

Let h=α*exp(-(r*r)/(2 *σ*σ));

Let h1 = h2= h;

Ui.Many SubtreesGro w(growingP oint s, posit ive, h1);

Ui.Many Subtr eesPrune(negati ve, h2);

Fig. 10. Algorithm of prototype adaptation.

ManySubtree sGrow(growing Points, po sitive, h1)

x=growingP oint s;

y=posit ive;

whil e(y!=null)

g=y.weight * h1;

 OneS ubtreeG row(x.root, y.root, g);

y=y.n ext; // next subtree in positiv e link

x=x.n ext; // next grow ing poi nt in U

Fig. 11. Algorithm of ManySubtreesGrow.
nput pattern T(s) is given. (a) Ui(s) and the growing points, r and w1. (b) T(s). (c) The
(s) is partial grown, x1 is only partially in T(s)–Ui(s).

easily. Another ways to present the hierarchical relations between
the trained units on the map are to use the SOM models which
have hierarchical maps, like the hierarchical feature map (HFP) [25]
and the growing hierarchical self-organizing map (GHSOM) [26].
Those SOM variants actually create hierarchical relations between
the trained units but they are complicated. The U-Matrix is simple.

After displaying the U-Matrix, we draw circles on the units
which have nonzero BMU count in foreground. The area of each
circle depends on the unit’s BMU count. We expect the input pat-
terns with higher similarity will be projected into the same neural
unit or the neighboring units.

5. Experiments

We conducted five experiments to evaluate the abilities of
the SOMCD. The first experiment was a robustness testing of the
SOMCD. The second demonstrated the mapping quality of the
SOMCD. We observed the topological preservation and the visual-
ization ability of the SOMCD and the effect of the concept hierarchy
types on the SOMCD. The third demonstrated the application of
the SOMCD on real transactional data. In the third and the fourth
experiments, we observed the mapping and clustering quality of
the SOMCD on real categorical data and mixed data, respectively.
The clustering results of the SOMCD were compared with state-
of-the-art clustering algorithms and extended SOM models. The
SOMCD, SOM, and SCM were all implemented in JAVA on a PC with
an Intel’s Core 2 CPU 6420 (2.13 GHz) and 4 GB memory running
Linux 2.2.67.

In the first three experiments, the SOMCD and two comparing
models, the SCM and the traditional SOM, were performed. The
neurons of these three SOM models were all arranged in rectangular
lattices on 2-D maps. The parameters setting of the SOMCD and
the SOM referred to the suggestions of the SOM PAK [22] and the
SOM Toolbox [21]. The number of the neurons on a map was about
5
√

N, where N is the number of data instances in a dataset.
In the SOMCD and the SOM, the Gaussian function was used

in the neighborhood function. The learning rate was of the form,

˛(s) = ˛(0) × (1.0 − s/S), where the initial value ˛(0) = 0.5, s is the
time, and S is the total iteration times. The updating radius was
of the form, �(s) = 1 + (�(0) − 1) × (1.0 − s/S) with �(0) is about half
of the width of the map. The number of training iterations was set

ManySub tree sPru ne(negat ive, h2)

y=negati ve;

while(y!=null)

p=y.wei ght * h2;

 One Subtree Prune (y.root, p);

y=y.next; // next subtr ee in negative lin k

Fig. 12. Algorithm of ManySubtreesPrune.

oft Computing 12 (2012) 3141–3157 3149

t
w
s

h

w
c
i
x

h
v
r
o
c
v
t
e
c

5

5

t
f
s
i
m
o
d
a

T

w
s

o
s

C

w
s
n
t
a

5

e
p
e

W

w
t
b
n

Training Time

0

10000

20000

30000

40000

50000

60000

1005010

S
e

c

SOM

SCM

SOMCD
W.-C. Liao, C.-C. Hsu / Applied S

o 10 times of the number of neurons. In the SCM, the Mexican hat
as used as the neighborhood function according to the author’s

uggestion [6]. The Mexican hat is defined as follows:

(i) = (1 − a · b · i2) · exp(−a · i2) (25)

here a = 0.35 is a constant, determining the width of Mexi-
an hat and b = 2.0 × s/S varies with time s. The learning rate
s ˛(s) = 0.25 × S/(0.5 × S + s), and the value of the threshold is
(s) = 0.2 × s/S.

When executing the SCM and the SOM, we used type-0 concept
ierarchies only. Data instances were needed to convert to binary
ectors and weighted symbol strings for the SOM and the SCM,
espectively. For example, in transactional data, if a transaction has
nly the 5th, 9th, and 11th items which come from a type-0 con-
ept hierarchy with 12 item nodes, then its corresponding binary
ector is (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0). Anyway, both the SOM and
he SCM ignore the information in concept hierarchies. Before the
xperimental results, some measures for evaluating mapping and
lustering quality are provided.

.1. Measures for evaluating mapping and clustering quality

.1.1. Mapping quality
Two measures were used to observe the mapping qualities of

he comparing SOM models: the trustworthiness and the continuity
unctions. When the nearest neighbors of an object in the mapped
pace are also close in the original data space, it is said the mapping
s trustworthy [27–29]. Let N be the number of the objects to be

apped, Uk(i) be the set of objects that are the k nearest neighbors
f the data object i in the visualization map, but not in the original
ata space. The trustworthiness of the mapping can be calculated
s follows:

rustworthness(k) = 1 − 2
Nk(2N − 3k − 1)

N∑
i=1

∑
j ∈ Uk(i)

(r(i, j) − k) (26)

here r(i, j) denotes the rank of the object j relative to i in data
pace.

When objects near to each other in the data space are also close
n the map, it is said the mapping is continuous [27–29]. The mea-
ure of the continuity of a mapping is calculated as follows:

ontinuity(k) = 1 − 2
Nk(2N − 3k − 1)

N∑
i=1

∑
j ∈ Vk(i)

(s(i, j) − k) (27)

here s(i, j) is the rank of the data object j relative to i in the output
pace, and Vi(k) denotes the set of those data objects that are the k
earest neighbors of data object i in the original space, but not in
he mapped space. The larger values of both of the trustworthiness
nd the continuity are better in mapping quality.

.1.2. Clustering quality
We evaluated the clustering quality of the comparing SOM mod-

ls or the clustering algorithms by the weighted entropy and the
urity. The first measure for clustering quality is the weighted
ntropy [18,30,31] defined as follows:

eighted entropy =
∑

j

(
Nj

N

∑
i

(
−Nij

Nj
· log

Nij

Nj

))
(28)
here Ni is the number of objects belonging to class i, Nj is
he number of objects belonging to cluster j, Nij is the num-
er of objects belonging to class i in cluster j. N is the total
umber of objects in dataset. The smaller weighted entropy is
Size of dataset (k)

Fig. 13. The comparison of SOMCD, SCM and SOM in training time.

better in clustering quality. The second measure for clustering
quality is the purity [17,19] defined as follows:

Purity =
∑

j

max
i

Nij

N
(29)

The purity is the accuracy, and the error rate [10,32] is 1 − purity.
The higher purity is better in clustering quality.

5.2. Robustness testing

When users deal with transactional data, the amount of the
transactions may be very tremendous in many real cases. In this
experiment, we tested the robustness of the SOMCD on the transac-
tional data. Before we conducted this experiment, a virtual retailer
which has 100,000 products (items) was created. Suppose all of the
products form a three-level concept hierarchy as follows. There are
20 main categories, 50 subcategories per each main category, and
100 products per each subcategory.

Three datasets, which have 10k, 50k, and 100k transactions,
were created, respectively. All of the transactions were simulated
by the following rules. Let T be the size of any transaction and X
be a Poisson distribution with E(X) = 14. Assume T = X + 1. That is,
once X is given, T is given. Then, for each transaction, there were T
items drawn randomly from the 100,000 items without replace-
ment. Besides, E(T) = E(X) + 1 = 15, that is, there are averagely 15
items for each transaction in this retailer.

We compared the execution time of the SOMCD and the two
comparing SOM models in the training phase with the above three
datasets; the result is depicted in Fig. 13. It is obvious that the
SOMCD outperformed both of the SCM and the SOM.

5.3. Experiments on transactional datasets

5.3.1. Synthetic dataset: the simulative library checkouts
In the following experiment, we observed the visualization and

the mapping qualities of the SOMCD and compared it with the
SCM and the traditional SOM. Besides, we investigated whether
the different types of the concept hierarchy affect the mapping
result of the SOMCD. A simulative college library which has 1250
books was created. Suppose all of the books form a three levels
concept hierarchy as follows. (1) Level-1 nodes: there are five main
categories (level-1 nodes) which are computer science (CS), math-
ematics (MA), physics (PH), biology (BI), and chemistry (CH). (2)
Level-2 nodes: each main category has five subcategories (level-2

nodes), e.g., PH.1, PH.2, PH.3, PH.4, PH.5 are the five subcategories of
the main category PH. (3) Level-3 nodes (leaves): each subcategory
has 50 books (level-3 nodes, or leaves), e.g., PH.1.1, . . ., PH.1.50 are
the books belonging to PH.1 subcategory.

3150 W.-C. Liao, C.-C. Hsu / Applied Soft Co

Table 1
Simulative library dataset.

Class # of checkouts Content per checkout Source

I 600
CS books: 80% Computer science

studentsMA books: 20%

II 500
MA books: 70%

Mathematics
students

CS books: 20%
PH books: 10%

III 500
PH books: 80%

Physics studentsMA books: 10%
CH books: 10%

IV 400
BI books: 80%

Biology students
CH books: 20%

Table 2
The three subclasses of class I in simulative library dataset.

Subclass Content per checkout # of checkouts

Under CS (80%) Under MA (20%)

I.1
CS.1: 90% MA.1: 90%

250CS.2: 10% MA.2: 10%

I.2
CS.2: 90% MA.2: 90%

200CS.3: 10% MA.3: 10%

CS.2: 10% MA.2: 10%

f
o
M
a
t

i
P
i
s
b
t
d
i
e
f

b
a
S
m
S
a
o
e

T
T

I.3 150CS.3: 10%, MA.3: 10%
CS.4: 80% MA.4: 80%

We simulated 2000 library checkout patterns, which come from
our different classes of students. Each class of checkouts has its
wn distribution in checkout content; they are listed in Table 1.
oreover, class I and II of checkouts were further divided into three

nd two subclasses, as shown in Tables 2 and 3, respectively. Totally,
here are seven groups distributed differently in the library dataset.

Each checkout of different classes was simulated by the follow-
ng rules. Let T be the number of books in a checkout, and let X be a
oisson distribution with mean �, i.e., � = E[X]. Assume T = X + 1, that
s, T is determined by X. Besides, E[T] = � + 1. In our dataset, � was
et to nine. That is, in this simulative library, the average number of
ooks borrowed by students in each checkout was ten. Whenever
he size of a checkout was determined, the books in a checkout were
ecided by a checkout content distribution of some class or subclass

n Tables 1, 2 or 3. For example, if a checkout belongs to class I.1,
ach book in this checkout has 72%, 8%, 18%, and 2% in probability
rom the subcategory CS.1, CS.2, MA.1, and MA.2, respectively.

Fig. 14(a) and (b) shows the results of the library dataset mapped
y the SOMCD when we used the type-1 and type-0 concept hier-
rchies, respectively. We distinguished these two situations of the
OMCD by SOMCD-1 and SOMCD-0. Fig. 14(c) and (d) shows the
apping results of the two comparing models, the SCM and the

OM, respectively. Each map was displayed by a 15 by 15 U-Matrix

s its background. After displaying the U-Matrix, we drew circles
n the units with nonzero BMU count in foreground. The area of
ach circle depended on the unit’s BMU count.

able 3
he two subclasses of class II in simulative library dataset.

Subclass Content per checkout # of
checkouts

Under CS (20%) Under MA (70%) Under PH (10%)

II.1
CS.1: 80% MA.1: 80% PH.1: 80%

300CS.2: 20% MA.2: 20% PH.2: 20%

II.2
CS.2: 20% MA.2: 20% PH.2: 20%

200CS.3: 80% MA.3: 80% PH.3: 80%
mputing 12 (2012) 3141–3157

In order to compare the mapping quality in visualization, for
each neuron with non-zero BMU count, we randomly scattered the
input patterns with specific colors within the neuron’s circle. The
colors of the input patterns were based on the classes to which
they belong. Seven colors were assigned to the classes and the sub-
classes. In class I, the three subclasses of the checkouts were colored
by red, green, and yellow, respectively. In class II, the two subclasses
of the checkouts were colored by blue and magenta, respectively.
The checkouts in class III and IV were colored by cyan and orange,
respectively.

It is obvious the SOMCD-1 had a better visualization and map-
ping quality than the others. In Fig. 14(a), the boundaries are clear
enough to separate the checkouts into different clusters easily. The
checkouts which belong to the same class were gathered as a group
or distributed as nearer neighbors, and the structure of the U-
Matrix perfectly coincided with the structure of our testing dataset.
When comparing with the other SOM models, we had the SOMCD-
1 gathered the three subclasses of class I and the two subclasses of
class II closely than the other classes. The SOMCD-1 reflected the
actual structure of the dataset on the map more precisely than the
others.

The result of the SOMCD-0 is shown in Fig. 14(b). The SOMCD-0
did not perform well as the SOMCD-1, but most the neurons with
the same subclass or class gathered and distributed as nearer neigh-
bors like the SOMCD-1 and the boundaries in U-Matrix could still
be observed. From this result, it is clear that the relevancy informa-
tion among the items in a concept hierarchy actually affected the
mapping quality of the SOMCD.

In Fig. 14(c), not only are the boundaries of its U-Matrix not
clear but also the SCM did not exactly map the same class of the
checkouts together. For instance, class IV was split into two clusters
located in the upper-left and the center of the map. In Fig. 14(d),
the SOM had the similar problems as the SCM, and the checkouts
tended to be projected all over the neurons on the map.

Fig. 15 shows the trustworthiness and the continuity values
versus the number of neighbors, k, varying from 50 to 500, when
the simulative library dataset was mapped by the three comparing
models. It is obvious the SOMCD-1 outperformed the others. All the
values of the trustworthiness and the continuity of the SOMCD-1
were greater than 0.80 and better than those of the others. That
is, the neighborhood preservation and the mapping quality of the
SOMCD-1 were better than those of the others. The SOMCD-0 had
better mapping quality than the SOM but less than the SCM.

5.3.2. Real dataset: articles of ACM proceedings
The real transactional dataset was extracted from the articles

of five ACM proceedings including SIGIR, SIGMOD, SIGCHI, SIGMM,
and SIGCOMM between 2000 and 2009. It is reasonable to con-
sider each of the five ACM proceedings as a different class of
articles. Based on the content, each article had been assigned some
classification codes, which are considered as the transaction of
the article. There are at least one primary classification code and
a few additional classification codes. For example, “comprehen-
sive query-dependent fusion using regression-on-folksonomies: a
case study of multimodal music search” [33] is an article from
the SIGMM, it contains three codes: {H.3.3.Query formulation,
H.3.3.Search process, H.5.5.System}. For each article, the classifi-
cation codes and its proceeding’s name were extracted and saved.
If an article contains only one code, we ignored it. At last, 3357
transactions were collected. Table 4 gives the description of the
real dataset in detail. All of the codes come from the ACM Com-

puting Classification System (CCS); it is considered as a four-level
concept hierarchy. All the classification codes of the ACM articles
and the CCS can be collected and downloaded from the ACM digital
library.

W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157 3151

Fig. 14. The mapping results of the SOMCD, the SCM, and the SOM when using the simulative library dataset. (a) The mapping result of the SOMCD-1 (using type-1 C.H.). (b)
The result of the SOMCD-0 (using type-0 C.H.). (c) The result of the SCM. (d) The result of the SOM. (For interpretation of the references to color in text, the reader is referred
to the web version of the article.)

Trustworthy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

550500450400350300250200150100500

k

SOMCD-1

SOMCD-0

SCM

SOM

Continuity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

550500450400350300250200150100500
k

SOMCD-1

SOMCD-0

SCM

SOM

(b) (a)

Fig. 15. Mapping qualities of the comparing models when using the simulative

Table 4
Articles of the five ACM proceedings.

Proceeding # of articles Min. # of codes Max. # of codes

SIGIR 689 2 10
SIGMOD 537 2 7
SIGCOMM 158 2 6

SIGCHI 920 2 18
SIGMM 1053 2 19
library dataset as an input. (a) The trustworthiness and (b) the continuity.

The mapping results of the articles by the three comparing
models, SOMCD, SCM, and SOM, are depicted in Fig. 16(a)–(c),
respectively. Each map had 18 by 18 units and a U-Matrix displayed
in the background. The boundaries in the SOMCD were clearer than
the other two. With the aid of the U-Matrix, we could separate
the units into different groups easily in the SOMCD, although there
were many small units scattering over the map.
For validating and comparing purpose, each article was mapped
into its BMU with a specific color. Five different colors, red, green,
yellow, blue, and magenta, were assigned to SIGIR, SIGMOD,
SIGCOMM, SIGCHI, and SIGMM, respectively. Contrast to the other

3152 W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157

F (b) is
o icle.)

m
a
a
t
s
S
s
c
o
i
t

f
a
i
F
u
c

(
t
S
S
n
a
fi

F
t
c

ig. 16. The mapping results of the ACM proceedings’ articles: (a) is of the SOMCD,
f the references to color in text, the reader is referred to the web version of the art

odels, the SOMCD had the following advantages in mapping
nd interesting findings. (1) The SOMCD projected a large amount
rticles of the same proceeding into few units; (2) the topics of
he SIGIR and the SIGMOD are closer than the other proceedings,
ince the red and green units were close; (3) the topics in the
IGCOMM are more concentrated than the other proceedings,
ince the yellow units were only distributed on the upper right
orner; (4) the topics in the SIGMM are more diverse than the
ther proceedings and overlap the topics in the other proceedings
n some extent, since quite a few magenta points were mixed with
he other color points in many units.

In order to confirm the above findings, we did more analyses as
ollows. Firstly, we removed the articles of the SIGMM in the dataset
nd applied the SOMCD on the remained dataset. We had the result-
ng map depicted in Fig. 17 was cleaner and clearer than the map in
ig. 16(a). Different color points were almost mapped into different
nits, and the purity of each unit was high. It is reasonable for us to
onfirm the last finding.

Next, articles mapped into the following four neurons, (4, 3),
10, 10), (4, 5), (15, 1) in Fig. 16(a), were analyzed, since they had
he largest number of articles in the respective proceedings, SIGIR,
IGCHI, SIGMOD, and SIGCOMM. There were about 51.8% of the

IGIR’s articles in neuron (4, 3), 47.6% of the SIGCHI’s articles in
euron (10, 10), 34.5% of the SIGMOD’s articles in neuron (4, 5),
nd 67.7% of the SIGCOMM’s articles in neuron (15, 1). Besides, the
rst three neurons were the top three in BMU count; there were

ig. 17. The mapping results of the ACM proceedings’ articles by the SOMCD, when
he articles of the SIGMM were removed. (For interpretation of the references to
olor in text, the reader is referred to the web version of the article.)
 of the SCM, and (c) is of the SOM. Each map has 18 by 18 units. (For interpretation

about 16.7%, 16.6%, 7.0%, and 4.3% of the articles mapped into the
four neurons, respectively. Note that (0, 0) was located at the upper
left corner on the map.

For each of the four neurons, the classification codes of the
articles inside the neuron were counted, and then the frequency
distribution of the classification codes was drawn as a histogram.
Fig. 18(a)–(d) depicts the frequency distributions of the four neu-
rons, respectively. All of the classification codes were only counted
to the level-2 codes at most, for example, the three codes, H.2, H.2.1,
and H.2.8.Data Mining, were all counted as the level-2 classification
code, H.2. Furthermore, the classification codes were also counted
according to what proceedings the articles belong to. Colors and
styles in the histograms showed the different proceedings.

In Fig. 18, it is clear that the four neurons had different kinds
of distributions in their classification codes. However, the neurons
(4, 3) and (4, 5) contained quite a few common classification codes
in H.3, and the classification codes in neuron (15, 1) were totally
different from the other three neurons. These helped us confirm
that some topics in SIGIR and SIGMOD are close and the SIGCOMM’s
topics are farer from the others. Also, for each of the four neurons
in Fig. 18(a)–(d), we found the corresponding proceeding’s articles
actually had the common classification codes with the SIGMM’s.
This helped us validate the last finding again.

Besides, we found in Fig. 18(a)–(d) most of the classification
codes concentrated on one level-2 classification code, that is, the
articles inside each of the four neurons must have high relevancy.
We inspected the articles inside neuron (4, 3), we found “informa-
tion search, retrieval, indexing” was the main topic of the articles
inside this neuron. We found even those of articles not com-
ing from the SIGIR were also relevant to information retrieval.
For instance, the article “Comprehensive query-dependent fusion
using regression-on-folksonomies: a case study of multimodal
music search” [33], which come from SIGMM, is obviously related
to multimedia as well as information search and retrieval. Thus, it is
reasonable this article was projected into this neuron. This helped
us validate the mapping result of our model again.

In the end of this subsection, we compared the three SOM
models in training time. From the real world dataset, the ACM pro-
ceedings’ articles, we chose articles randomly and created three
datasets of which size were 1357, 2357, and 3357. Then we applied
the SOMCD, the SOM and the SCM, to those three datasets, respec-
tively and compared their training time. The result was depicted in
Fig. 19. We found that our model was much faster than the other
two models. The SOM performed worst; since each transaction in

the SOM must be converted to a binary vector of which dimension
is the number of the all possible items in a transactional dataset. In
the case of ACM proceedings’ articles, it is about 1215 items. The
SOM suffered from the high dimensional problem severely, while

W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157 3153

F urons
r

t
a

5

d
c
i
[
a

h
d
i
e
3

C
e
t

F
c

ig. 18. The frequency distributions of the classification codes of the selected ne
espectively.

he SOMCD did not have such a problem. Transactions in the SOMCD
re represented as trees but not vectors.

.4. Experiment on categorical datasets

Owing to the lack of type-1 categorical data sets, we only con-
ucted experiments on type-0 categorical datasets. Two type-0
ategorical data sets, the Mushroom and the Congressional Vot-
ng Records, which come from the UCI machine learning repository
34], were used to evaluate the quality of the SOMCD in mapping
nd clustering categorical datasets.

The Mushroom dataset has 8124 instances, and each instance
as 22 categorical attributes plus a class label. Those attributes
escribe the physical characteristics of Mushrooms and are all nom-

nally valued. All of the 8124 Mushroom instances are labeled by
ither edible or poisonous. 4208 of them are edible (51.8%) and
916 are poisonous (48.2%).
The Congressional Voting Records dataset is the United States
ongressional voting records in 1984. There are 435 records, and
ach record has 16 attributes plus a class label. Each record reveals
he votes on 16 issues of a Congressman in 1984 and is labeled

Training Time

0

10000

20000

30000

40000

50000

60000

335723571357

Size of dataset

m
s

SOM

SCM

SOMCD

ig. 19. The training time comparison of the SOMCD, SOM, SCM on the ACM pro-
eedings’ articles.
. (a), (b), (c), (d) are the histograms of the neurons (4, 3), (10, 10), (4, 5), (15, 1),

by the Congressman’s party, either Republican or Democrat. 168 of
them are Republicans and 267 are Democrats. Missing values occur
in both of the two datasets.

The Mushroom and the Congressional Voting Records datasets
had been used for evaluating clustering performance in many trans-
actional and categorical data clustering algorithms, including Large
Items [16], ROCK [15], CLOPE [17], COOLCAT [31], TCSOM [10],
CLICKS [35], AT-DC [32], SCALE [18,19] and so on. Except COOL-
CAT and SCALE, all the algorithms used both of the datasets. The
results of the SOMCD on the two datasets were compared with the
mentioned algorithms.

In Fig. 20, we show the results of the Mushroom dataset mapped
by the SOMCD. The map in Fig. 20(a) displays the neurons with
non-zero BMU count in the foreground and the U-Matrix in the
background; and the data instances colored by either red (poi-
sonous) or green (edible) were mapped into their own BMUs. The
colored instances were used for observing the mapping quality
only. We found all the neurons were pure except only two neu-
rons; and neurons of the same class were gathered as a group. The
boundaries in the U-Matrix were clear, so we could easily and man-
ually divide the neurons with non-zero BMU count into 16 clusters
from the map in Fig. 20(b). The clusters are shown in Table 5. Only
three clusters were impure. If we clustered the neurons finer, some
clusters, like the cluster 1, 5, 6, D, could be further divided into
smaller clusters. Totally, 26 clusters were obtained. We evaluated
the clustering quality by the weighted entropy and the purity. The
clustering quality of the SOMCD and other algorithms on the Mush-
room dataset is listed in Table 6. We found the clustering quality
of the SOMCD was close to quality of the CLOPE and ROCK and is
better than the quality of the others.

In Fig. 21, we show the results of the Congressional Voting
Records mapped by the SOMCD. The map in Fig. 21(a) displays
the neurons with non-zero BMU count in the foreground and the
U-Matrix in the background; and the data instances colored by

either red (Republicans) or green (Democrat) were mapped into
their BMU. The boundaries in the U-Matrix were clear, so we could
easily and manually divide the neurons with non-zero BMU count
into five clusters from the map in Fig. 21(b). The clustering result is

3154 W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157

Fig. 20. The mapping and clustering results of the SOMCD on the Mushroom. (a) The map displays the neurons with non-zero BMU count and the U-Matrix in the background;
and the data instances colored by red (poisonous) and green (edible) were mapped into their own BMUs. (b) The manual clustering result. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)

Table 5
The clusters of the Mushroom on the SOMCD’s map.

Cluster Edible Poisonous

1 48 200
2 512 0
3 192 0
4 0 1332
5 96 264
6 1735 0
7 96 0
8 0 288
9 41 72
A 192 0
B 192 0
C 288 0
D 0 1053
E 48 0
F 0 707

Table 6
The clustering quality of the SOMCD and the mentioned algorithms on the Mush-
room dataset.a

Algorithm No. of Clusters Entropy Purity

SOMCD 16 0.0719 0.9772
SOMCD 26 0.0172 0.9940
LargeItems 14 0.1745 0.9628
ROCK 21 0.0011 0.9961
CLOPE 27 (r = 2.6) n/a 0.9961
CLOPE 30 (r = 3.1) 0.0000 1.0000
TCSOM 2–9 n/a 0.8180
AT-DC 8 0.2350 0.9321
CLICKS 11 n/a 0.8843

a Entropy of the original dataset = 0.9991.

F
i
i

G 768 0

ig. 21. The mapping and clustering results of the SOMCD on the Congressional Voting Re
n the background; and the data instances colored by red (Republican) and green (Dem
nterpretation of the references to color in this figure legend, the reader is referred to the
cords. (a) The map displays the neurons with non-zero BMU count and the U-Matrix
ocrat) were mapped into their own BMUs. (b) The manual clustering result. (For

 web version of the article.)

W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157 3155

Table 7
The clusters of the Congressional Voting Records on the SOMCD’s map.

Cluster no. Democrat Republican

1 26 6
2 6 0
3 17 1

s
2
5
c
t
o
T
t

5

r
m
i
e
T
a
t

p
r
[
u
d
i
i
t
T
a
b
m
e

A
n
a
t
t
u
t
v
3
f

T
T
s

Table 9
The clusters of the Adult on the SOMCD’s map.

Cluster ≤50k >50k >50k (%)

B 97 346 78.10
A 266 534 66.75
6 118 180 60.40
8 155 135 46.55
7 431 340 44.10
F 176 80 31.25
5 129 56 30.27
D 1094 452 29.24
C 220 35 13.73
H 293 43 12.80
3 444 50 10.12
E 884 98 9.98
9 933 39 4.01
2 746 19 2.48
G 126 3 2.33
4 532 9 1.66
I 82 1 1.20
1 713 4 0.56
4 180 4
5 38 157

hown in Table 7. Since the color of the boundaries among cluster 1,
, 3, and 4 was lighter than the color of the boundary around cluster
, cluster 1, 2, 3, and 4 could be merged into one cluster. The result
oincided with the structure of our dataset, which contains only
wo classes of instances. The clustering quality of the SOMCD and
ther algorithms on the Congressional Voting Records is listed in
able 8. We found the clustering quality of the SOMCD was better
han the other algorithms except the TCSOM.

.5. Experiment on mixed dataset

The Adult dataset, which comes from the UCI machine learning
epository [34], was used to evaluate the quality of the SOMCD in
apping and clustering mixed data. The Adult dataset has 48,842

nstances, and each instance has 14 attributes, including eight cat-
gorical attributes and 6 numerical attributes, plus one class label.
he class label indicates whether the salary is over 50k or not. It is
bout 24% of the instances having the label ‘>50k’ and 76% having
he label ‘≤50k’.

The Adult dataset had been used for evaluating the clustering
erformance of some extended SOM models and clustering algo-
ithms on mixed data, including GSOM [12], GViSOM [14], and CAVE
30]. In the experiments of the GSOM and the GViSOM, instead of
sing the whole Adult dataset, the dataset has only 10,000 instances
rawn randomly from the original Adult dataset, and for each

nstance, only seven attributes were selected. There are four numer-
cal ones, Capital gain, Capital loss, Age, and Hours per week; and
hree categorical ones, Marital status, Relationship, and Education.
his data subset has about 24.24% instances having the label ‘>50k’
nd 75.76% instances having the label ‘≤50k’, similar to the distri-
ution of the original Adult dataset. In order to compare with the
entioned SOM models, we adopted the same data subset in our

xperiment.
Next, we built the accompanying concept hierarchy for the

dult subset. For each numerical attributes, we created a category
ode and a virtual node as its only one leaf. For each categorical
ttributes, we adopted the same concept hierarchies in the men-
ioned SOM models as shown in Fig. 22. The Marital-status and
he Education attributes are multi-level concept hierarchies, which
sually contain more information about the relevancy between

heir own items. Each data instance in the Adult subset was con-
erted to a transaction tree as we have mentioned in Section
.4. The CDF used in this experiment is the uniform distribution
unction.

able 8
he clustering quality of the SOMCD and the mentioned algorithms on the Congres-
ional Voting Records.a

Algorithm No. of clusters Entropy Purity

SOMCD 5 0.4469 0.8874
SOMCD 2 0.4681 0.8894
TCSOM 2–9 n/a 0.9210
ROCK 2 0.5360 0.8571
AT-DC 2 0.5402 0.8111
CLICKS 6 n/a 0.7954
LargeItems 2 0.5360 0.8571

a Entropy of the original dataset = 0.962308.
J 137 0 0.00

Total 7576 2424

In Fig. 23, we show the results of the Adult data subset mapped
by the SOMCD. The map in Fig. 23(a) displays the neurons with
non-zero BMU count in the foreground and the U-Matrix in the
background; and the data instances colored by either red (‘≤50k’) or
green (‘>50k’) were mapped into their own BMUs. We found most of
the neurons had high purity. The boundaries in the U-Matrix were
clear, so we could easily and manually divide the neurons with
non-zero BMU count into 19 clusters from the map in Fig. 23(b).
Table 9 shows the clustering results which were sorted accord-
ing to the percentage of the ‘>50k’ instances in each cluster. Most
of the percentages were significantly different from the average
value 24.24%. If we used the darker units as the boundaries, then
we obtained the larger regions surrounded by the darker boundary
and the number of the clusters was reduced to 7. Each of the fol-
lowing cluster groups, (1, 2, 3, 4), (5, 6), (7, 8, A), (9, J), (C, D), (E, F,
H, I, G), were merged as a larger cluster, respectively.

In order to know whether the relevancy information in concept
hierarchies was useful for the mapping and clustering quality of the
SOMCD, we further conducted the experiment with the three cate-
gorical attributes having only type-0 concept hierarchies. Like the
experiments on the library dataset, we distinguished these two sit-
uations (using type-1 or type-0 concept hierarchies) of the SOMCD
by SOMCD-1 and SOMCD-0, respectively.

In Fig. 24, we show the results of the Adult data subset mapped
by the SOMCD-0. We found the mapping result was close to the
result of SOMCD-1. Next, we also clustered the neurons with non-
zero BMU count on the map in Fig. 23(b) manually and obtained 15
clusters.
The clustering quality of the SOMCD and the other two SOM
models and the CAVE on the Adult dataset is listed in Table 10. We
found (a) the clustering quality of the SOMCD-1 is better than the

Table 10
Clustering quality of SOMCD, GSOM, GViSOM and CAVE on the Adult dataset.a

Algorithm No. of clusters Entropy Purity

SOMCD-1 19 0.5672 0.8155
SOMCD-1 7 0.5927 0.7982
SOMCD-0 15 0.6110 0.7920
GSOM 7 (212 outliers) 0.6225 0.7715
GViSOM 5 (6 outliers) 0.61773 0.7807
CAVEb 9 0.6069 0.7871

a Entropy of the Adult data subset is 0.7990.
b The CAVE used the whole Adult dataset.

3156 W.-C. Liao, C.-C. Hsu / Applied Soft Computing 12 (2012) 3141–3157

Rela tions hip

O
w

n
-ch

ild

W
ife

N
o

t-in
-fam

ily

O
th

er-relativ
e

U
n

m
arried

H
u

sb
an

d

N
ev

er-m
arried

Lit tle Juni or HighS cho ol Coll ege Adv ance d

1
st-4

th
5

th
-6

th

9
th

7
th

-8
th

1
0

th
1
1

th

1
2

th
H

S
-g

rad

S
o

m
e-co

lleg
e

B
ach

elo
rs

A
sso

c-v
o
c

A
sso

c-acd
m

M
asters

D
o

cto
rate

P
ro

f-sch
o

o
l

P
resch

o
o

l

Marital -status Ed ucati on

Single Couple

M
arried

-A
F

-sp
o

u
se

M
arried

-civ
-sp

o
u

se

S
ep

arated

D
iv

o
rced

W
id

o
w

ed

M
arried

-sp
o

u
se-ab

sen
t

Fig. 22. The concept hierarchies of the three categorical attributes in the Adult dataset.

Fig. 23. The mapping and clustering results of the SOMCD on the Adult. (a) The map displays the neurons with non-zero BMU count and the U-Matrix in the background.
The data instances colored by red (‘≤50k’) and green (‘>50k’) were mapped into their own BMUs. (b) The clustering result. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)

F ap di
T eir ow
t

o
m
a
a
h

ig. 24. The mapping and clustering results of the SOMCD-0 on the Adult. (a) The m
he data instances colored by red (‘≤50k’) and green (‘>50k’) were mapped into th
his figure legend, the reader is referred to the web version of the article.)

ther two SOM models even we clustered the neurons in a rough

anner; (b) the clustering performance of the SOMCD-0 is as good

s the other SOM models but is worse than SOMCD-1. From the
bove findings, the relevancy information embedded in the concept
ierarchies actually helped the SOMCD gain better performance.
splays the neurons with non-zero BMU count and the U-Matrix in the background.
n BMUs. (b) The clustering result. (For interpretation of the references to color in

6. Conclusions and future work
In this paper, we propose an extended SOM model, the SOMCD,
which can map the varied kinds of data objects all related to the
categorical domain into a lower dimensional space and visualize

oft Co

t
t
t
c
c
i
n
g
c
g
a
S
t
g
p
a
r
p
c

A

T

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

of the Information Systems Division at the Testing Center
W.-C. Liao, C.-C. Hsu / Applied S

he topological order of the data objects. Based on the concept
rees to represent the data objects in the categorical domain and
he prototypes of the neurons, the new devised distance measure
an take the relevancy information embedded in the accompanying
oncept hierarchies into account and properly find the similar-
ty between the data objects and the neurons. After adapting the
eurons’ tree-structure prototypes iteratively, the SOMCD has the
ood qualities in projecting and visualization. Users of the SOMCD
an easily separate the trained neurons on the map into different
roups hierarchically and cluster the original data objects eventu-
lly. From the experiments in the synthetic and real datasets, the
OMCD performs better than many other SOM models and clus-
ering algorithms in visualization, mapping and clustering. All the
ood natures of the SOMCD mainly come from the tree-structure
rototype, the new devised distance measure, and the tree-growing
daptation method. Our future work is to develop a clustering algo-
ithm for the trained SOMCD neurons in order to automatically and
recisely cluster the varied kinds of data objects which are in the
ategorical domain.

cknowledgement

This research was supported by the National Science Council,
aiwan, under grant NSC 100-2410-H-224-003-MY2.

eferences

[1] T. Kohonen, Self-organized formation of topologically correct feature maps,
Biological Cybernetics 43 (1982) 59–69.

[2] T. Kohonen, Self-organizing Maps, 3rd ed., Springer, Berlin, 2001.
[3] T. Kohonen, P. Somervuo, Self-organizing maps of symbol strings, Neurocom-

puting 21 (1998) 19–30.
[4] T. Kohonen, P. Somervuo, How to make large self-organizing maps for nonvec-

torial data, Neural Networks 15 (2002) 945–952.
[5] T. Kohonen, Self-organizing maps of symbol strings, in: Technical Report A42,

Laboratory of Computer and Information Science, Helsinki University of Tech-
nology, Finland, 1996.

[6] J.A. Flanagan, Unsupervised clustering of symbol strings, in: Proceedings of the
International Joint Conference on Neural Networks, 2003, vol. 3254, 2003, pp.
3250–3255.

[7] J. Himberg, J.A. Flanagan, J. Fantyjarvi, Towards context awareness using Sym-
bol Clustering Map, in: Proceedings of WSOM, 2003, Kitakyushu, Japan, 2003.

[8] P.J. Somervuo, Online algorithm for the self-organizing map of symbol strings,
Neural Networks 17 (2004) 1231–1239.

[9] S. Günter, H. Bunke, Self-organizing map for clustering in the graph domain,
Pattern Recognition Letters 23 (2002) 405–417.

10] Z.Y. He, X.F. Xu, S.C. Deng, TCSOM: clustering transactions using self-organizing
map, Neural Processing Letters 22 (2005) 249–262.

11] B. Hammer, A. Micheli, N. Neubauer, A. Sperduti, M. Strickert, Self-organizing
maps for time series, in: Proceedings of WSOM, 2005, Paris, 2005.

12] C.-C. Hsu, Generalizing self-organizing map for categorical data, IEEE Transac-
tions on Neural Networks 17 (2006) 294–304.

13] J. Han, M. Kamber, Data Mining: Concepts And Techniques, Morgan Kaufmann,
San Francisco, CA, London, 2001.

14] C.C. Hsu, K.M. Wang, S.H. Wang, GViSOM for multivariate mixed data pro-
jection and structure visualization, in: Proceedings of the International Joint
Conference on Neural Networks, 2006, 2006, pp. 3300–3305.

15] S. Guha, R. Rastogi, K. Shim, Rock: a robust clustering algorithm for categorical
attributes, Information Systems 25 (2000) 345–366.

16] K. Wang, C. Xu, B. Liu, Clustering transactions using large items, in: Proceed-
ings of the Eighth International Conference on Information and Knowledge
Management, ACM, Kansas City, MI, United States, 1999, pp. 483–490.

17] Y. Yang, X. Guan, J. You, CLOPE: a fast and effective clustering algorithm
for transactional data, in: Proceedings of the Eighth ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, ACM, Edmonton,
Alberta, Canada, 2002, pp. 682–687.

18] H. Yan, K. Chen, L. Liu, Z. Yi, SCALE: a scalable framework for efficiently clus-
tering transactional data, Data Mining and Knowledge Discovery 20 (2010)
1–27.
mputing 12 (2012) 3141–3157 3157

19] H. Yan, K. Chen, L. Liu, J. Bae, Determining the best K for clustering transactional
datasets: a coverage density-based approach, Data & Knowledge Engineering
68 (2009) 28–48.

20] H. Yin, ViSOM—a novel method for multivariate data projection and structure
visualization, IEEE Transactions on Neural Networks 13 (2002) 237–243.

21] J. Vesanto, J. Himberg, E. Alhoniemi, J. Parhankangas, SOM toolbox for Mat-
lab 5, in: Report A57, Helsinki University of Technology, 2000, Available from
http://www.cis.hut.fi/projects/somtoolbox/.

22] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, SOM PAK. The self-organizing
map program package, in: Report A31, Helsinki University of Technology, 1996,
Available from http://www.cis.hut.fi/research/som pak/.

23] A. Ultsch, Self-organizing neural networks for visualization and classification,
in: O. Opitz, B. Lausen, R. Klar (Eds.), Information and Classification, Springer,
1993, pp. 307–313.

24] A. Ultsch, Maps for the visualization of high-dimensional dataspaces, in: Pro-
ceedings of the WSOM, 2003, Kitakyushu, Japan, 2003, pp. 225–230.

25] R. Mukkulainen, Script recognition with hierarchical feature maps, Connection
Science 2 (1990) 83–101.

26] A. Rauber, D. Merkl, M. Dittenbach, The growing hierarchical self-organizing
map: exploratory analysis of high-dimensional data, IEEE Transactions on Neu-
ral Networks 13 (2002) 1331–1341.

27] S. Kaski, J. Nikkila, M. Oja, J. Venna, P. Toronen, E. Castren, Trustworthiness
and metrics in visualizing similarity of gene expression, BMC Bioinformatics 4
(2003) 48.

28] A. Vathy-Fogarassy, A. Janos, Local and global mappings of topology represent-
ing networks, Information Sciences 179 (2009) 3791–3803.

29] J. Venna, S. Kaski, Local multidimensional scaling with controlled tradeoff
between trustworthiness and continuity, in: Proceedings of the Workshop on
Self-Organizing Maps, 2005, 2005, pp. 695–702.

30] C.-C. Hsu, Y.-C. Chen, Mining of mixed data with application to catalog market-
ing, Expert Systems with Applications 32 (2007) 12–23.

31] D. Barbará, Y. Li, J. Couto, COOLCAT: an entropy-based algorithm for categor-
ical clustering, in: Proceedings of the Eleventh International Conference on
Information and Knowledge Management, ACM, McLean, VI, USA, 2002, pp.
582–589.

32] E. Cesario, G. Manco, R. Ortale, Top-down parameter-free clustering of high-
dimensional categorical data, IEEE Transactions on Knowledge and Data
Engineering 19 (2007) 1607–1624.

33] B. Zhang, Q. Xiang, H. Lu, J. Shen, Y. Wang, Comprehensive query-dependent
fusion using regression-on-folksonomies: a case study of multimodal music
search, in: Proceedings of the 17th ACM International Conference on Multime-
dia, ACM, Beijing, China, 2009, pp. 213–222.

34] A. Frank, A. Asuncion, UCI Machine Learning Repository, University of Cal-
ifornia, School of Information and Computer Science, Irvine, CA, 2010,
http://archive.ics.uci.edu/ml.

35] M.J. Zaki, M. Peters, I. Assent, T. Seidl, Clicks: an effective algorithm for mining
subspace clusters in categorical datasets, Data & Knowledge Engineering 60
(2007) 51–70.

Wen-Chung Liao received his M.S. degree from the
Department of Applied Mathematics, National Chung
Hsing University, Taiwan, in 1990. He is a doctoral student
in the Department of Information Management, National
Yunlin University of Science and Technology, Taiwan. His
research interests include data mining, machine learning,
and statistics.

Chung-Chian Hsu received the M.S. and Ph.D. degrees
in computer science from Northwestern University,
Evanston IL, USA, in 1988 and 1992, respectively. He
joined the Department of Information Management at
National Yunlin University of Science and Technology,
Taiwan, in 1993. He was the Chairman of the Depart-
ment from 2000 to 2003. He is currently a professor at
the Department. Since 2002, he has also been the director
for Technological and Vocational Education, Taiwan. His
research interests include data mining, machine learning,
pattern recognition, information retrieval, and decision
support systems.

http://www.cis.hut.fi/projects/somtoolbox/
http://www.cis.hut.fi/research/som_pak/

	A self-organizing map for transactional data and the related categorical domain
	1 Introduction
	2 Related works
	2.1 Self-organizing map
	2.2 SOMs on the categorical domain

	3 Distance function on categorical domain
	3.1 Distance function on concept trees
	3.2 The distance function on transactional data
	3.3 The distance function on categorical data
	3.4 The distance function on mixed data

	4 SOMCD
	4.1 Operators on concept trees
	4.2 SOMCD and its algorithms
	4.2.1 Initialization phase
	4.2.2 Training phase
	4.2.3 Adaptation algorithms of SOMCD

	4.3 Visualization of the SOMCD

	5 Experiments
	5.1 Measures for evaluating mapping and clustering quality
	5.1.1 Mapping quality
	5.1.2 Clustering quality

	5.2 Robustness testing
	5.3 Experiments on transactional datasets
	5.3.1 Synthetic dataset: the simulative library checkouts
	5.3.2 Real dataset: articles of ACM proceedings

	5.4 Experiment on categorical datasets
	5.5 Experiment on mixed dataset

	6 Conclusions and future work
	Acknowledgement
	References

