勤益科大機構典藏:Item 987654321/1546
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2928/5721 (51%)
Visitors : 374148      Online Users : 734
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncut.edu.tw/handle/987654321/1546


    Title: 可拓類神經網路於多頻譜影像之研究
    Research of Extension Neural Network Approach in MRI Classification
    Authors: 林建安
    Lin, Jian-Ann
    Contributors: 資訊與電能科技研究所
    Keywords: 核磁造影;可拓;感知機;腦部;ROC;FCM;多頻譜;分類
    MRI;Extenics;Extension;Neural Network;brain;Receiver Operating Curve;Fuzzy C-Means;Multispectral;Classification
    Date: 2006
    Issue Date: 2008-10-07 09:32:14 (UTC+8)
    Abstract: 近年來核磁共振影像(MRI)被廣泛的應用於臨床上,經過證實MRI對人體無害,而且MRI可以由不同的頻率下對同一個切面做掃描,因此MRI的資訊量可以說是非常的龐大,但是對醫療人員來說,資訊量龐大或不足,都會影響判斷的結果,所以必須找出一個方法,在短時間內處理MRI產生出來的龐大資料。為了解決這個問題,可以藉助電腦的運算,因此問題轉向分類的演算法,本研究以可拓類神經網路(Extension Neural Network, ENN)為主,以可拓類神經網路做分類,為了進一步證實可拓類神經網路的成效,以ROC(Receiver Operating Curve)準測為評估的標準,並且與可拓理論、FCM、雙層感知機做比較,由實驗的結果可以得知可拓類神經網路皆優於其他三種演算法。
    Appears in Collections:[-] 【資訊與電能科技研究所】博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown2013View/Open


    All items in NCUTIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback