English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 374404      線上人數 : 989
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/2222


    題名: 應用灰色理論的競爭式學習網路於平均值/差值轉換
    作者: 林基源
    Lin, Chi-Yuan
    貢獻者: 電子工程系
    Department of Electronic Engineering
    關鍵詞: 向量量化;競爭式學習網路;灰色理論;平均值/差值轉換
    Vector quantization;Competitive learning network;Grey theorem;Mean value/Difference value transform
    日期: 2001-12
    上傳時間: 2008-12-12 11:52:36 (UTC+8)
    出版者: 勤益科技大學
    摘要: 植基於向量量化,一個應用灰色理論的競爭式學習網路於平均值/差值轉換域技術被提出。本篇論文中,灰色理論被應用到一個兩層的修正競爭式學習網路上。其目的在於建立一編碼簿使得介於訓練向量與編碼簿中之編碼向量的灰關聯度最大。影像資訊並經由平均值/差值轉換後,以詳細係數做向量量化。根據實驗結果顯示,基於灰色理論最大關聯準則之競爭式學習網路及於平均值/差值轉換域上所產生的影像壓縮編碼簿具有效性及良好效能。
    Based on Vector Quantization (VQ), a Grey-based Competitive Learning Network (GCLN) in the Mean value / Difference value Transform (MDT) domain is proposed. In this paper, the grey theory is applied to a two-layer Modify Competitive Learning Network (MCLN) in order to generate optimal solution for VQ. In accordance with the degree of similarity measures between training vectors and codevectors, the grey relational analysis is used to measure the relationship degree among them. The information transformed by mean value / difference value operation was separated into mean value and detailed coefficients. Then the detailed coefficients are trained using the proposed method to generate a better codebook in VQ. The compression performances using the proposed approach are compared with GCLN and conventional vector quantization LBG method, experimented results show that valid and promising performance can be obtained using the GCLN and proposed approach.
    關聯: 勤益學報 No.19 p.111-118
    顯示於類別:[勤益科技大學] 勤益學報

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    應用灰色理論的競爭式..pdf168KbAdobe PDF2782檢視/開啟


    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋