English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 373865      線上人數 : 452
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/2735


    題名: On Mixed-Discrete Nonlinear Optimization Problems: A Comparative Study
    作者: Lin, S.S.;Zhang, C.;Wang, H.P.
    日期: 1995
    上傳時間: 2009-08-19 09:53:54 (UTC+8)
    摘要: Modified genetic algorithms are developed and presented in this paper. Principles of
    genetics and natural selection are adapted into the search procedure for mixed-discrete
    nonlinear optimization problems. Such classes of global optimization algorithms are based
    on a randomized selection of design space that yields an improvement in the objective
    function. An implementation of the approach to a series of test problems in engineering
    design optimization with diversity of variable representations and demonstrated
    nonconvexities are discussed, and the results were compared with other algorithms. Results
    show that genetic algorithms are able to consistently provide efficient, fine quality solutions,
    that are robust to genetic parameters and provide a significant capability for mixed-discrete
    constrained nonlinear optimization problems.
    關聯: Engineering Optimization, 23, 287-300
    顯示於類別:[企業管理系(所)] 【企業管理系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋