English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 386885      線上人數 : 360
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/3845


    題名: THERMAL ERROR MODELING OF A MACHINE TOOL USING DATA MINING SCHEME
    作者: Kun-Chieh Wang
    Pai-Chang Tseng
    Zue-Chin Chang
    貢獻者: 國立勤益科技大學機械工程系
    關鍵詞: No more than five items.
    日期: 2009-10-14
    上傳時間: 2012-08-28 15:25:42 (UTC+8)
    出版者: 台中市:國立勤益科技大學工程學院
    摘要: This paper uses the knowledge discovery technique to build an effective and transparent mathematic thermal error model for tool machinery. Our proposed thermal error modeling methodology (called KRL) integrates the schemes of K-means theory (KM), rough-set theory (RS), and linear regression model (LR). Firstly, to explore the machine tool’s thermal behavior, an integrated measurement system is designed to measure the temperature ascents at selected characteristic points and the thermal deformations at spindle nose at the same time under suitable real machining conditions. Secondly, the obtained data are classified by the KM method and further reduced by the RS scheme, and eventually a linear thermal error model is then established by the LR technique. To evaluate the performance of our proposed model, an adaptive neural fuzzy inference system (ANFIS) thermal error model is introduced for comparison. At last, a verification experiment is carried out and results reveal that the proposed KRL model has good predictive ability of thermal behavior in tool machinery. Our proposed KRL model takes the advantages of transparency and easy-understanding to users, and can be easily programmed as well as modified to adapt to any different machining conditions.
    關聯: 2009綠色科技工程與應用研討會論文集, 362-371
    顯示於類別:[機械工程系(所)] 【機械工程系】研討會論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋