English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 374213      線上人數 : 799
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5829


    題名: Study on Application of Grey Prediction Model in Superalloy MAR-247 Machining
    作者: Chen, Shao-Hsien
    貢獻者: 圖書館
    日期: 2015
    上傳時間: 2016-10-14 10:11:50 (UTC+8)
    摘要: Superalloy MAR-247 is mainly applied in the space industry and die industry. With its characteristics of mechanical property, fatigue resistance, and high temperature corrosion resistance, therefore, it is mainly applied in machine parts of high temperature and corrosion resistance, such as turbine blades and rotor of the aeroengine and turbine assembly in the nuclear power plant. However, considering that its properties of high strength, low thermal conductivity, being difficult to soften, and work hardening may reduce the life of cutting-tool and weaken the surface accuracy, the study provided minimizing experiment occurring during milling process for superalloy material. As a statistical approach used to analyse experiment data, this study used GM in the grey prediction model to conduct simulation and then predict and analyze its characteristics based on the experimental data, focusing on the tool life and surface accuracy. Moreover, with the superalloy machining parameters of the current effective application improved grey prediction model, it can decrease the errors, extend the tool life, and improve the prediction precision of surface accuracy.
    關聯: Advances in Materials Science and Engineering
    顯示於類別:[機械工程系(所)] 【機械工程系】期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Study on Application of Grey Prediction Model in Superalloy MAR-247 Machining.pdf2416KbAdobe PDF1090檢視/開啟


    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋