勤益科大機構典藏:Item 987654321/5830
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2928/5721 (51%)
Visitors : 1499503      Online Users : 286
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncut.edu.tw/handle/987654321/5830


    Title: An analysis of stainless steel micro square hole-flange using stretching processes
    Authors: Tsung Chia Chen, Ching Min Hsu
    Contributors: 圖書館
    Keywords: Elasto-Plastic
    Finite Elemen
    Micro Square Hole-Flange
    Stainless Steel
    Date: 2014-08
    Issue Date: 2016-10-14 10:14:33 (UTC+8)
    Abstract: This study is focused on the influences of micro stretching process, miniaturized of micro square hole-flange to stainless steel (SUS304) material, and different thicknesses (0.2, 0.1, 0.05mm) of plate. By undergoing finite element program analysis of material parameter corrected by scale factor, we can discover the differences of different thicknesses of plate during micro stretching forming process. The finite element method in this paper is combined with the plastic flow rule of Dynaform and LS-DYNA solver, finite element deformed theory, and updated Lagrangian formulation to simulate the process of micro square hole-flange. The point of this research is by simulating and analyzing all datum of micro stretching forming process, relation between punch load and stroke, distribution of thickness, distribution of stress and strain, the maximum diameter of flange’s hole and the maximum height of flange. Design three pairs of micro square hole-flange tool undergoing micro stretching experience through SUS304 plate. Compare the experience to the results of the simulation to test the reliability of this analyzing program. Through finite element analysis and the results of the experience, we can discover that the minimum of the thickness, the biggest stress and major strain centralize areas where blank and punch corner meet.
    Relation: Key Engineering Materials
    Appears in Collections:[Department of Mechanical Engineering] 【機械工程系】期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in NCUTIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback