English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 373252      線上人數 : 116
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5837


    題名: Preparation and Characterisation of Polyethersulfone Filled with Silica Nanoparticles
    作者: Chium, Cheng-Fang Ou and Shing-Jyun
    貢獻者: 圖書館
    日期: 2015
    上傳時間: 2016-10-14 11:38:14 (UTC+8)
    摘要: This study was performed primarily to investigate the effects of chemical modification on silica surface and
    the silica content on the thermal and gas barrier properties of a polyethersulfone (PES) matrix. The PES/SiO2
    composites composed of PES and three species of SiO2 nanoparticles (AEROSIL A200, R805 and R974) were
    prepared by solution blending. The thermal behaviour, thermal stability, and morphology of the composites were
    studied by DSC, TGA and SEM. The oxygen barrier efficiency of the composites was characterized by use of an
    oxygen transmission rate (OTR) analyzer. The composites’ properties, such as glass transition temperature (Tg
    ),
    decomposition temperature (Td
    ), and oxygen barrier, were found to improve. The Tg
    s of the composites increased
    significantly with the silica content and the 10 wt.% R805 composite exhibited the highest Tg, which was 28.7 °C
    higher than that of pure PES (193.8°C). The Td
    s of these composites increased from 4.9 °C to 10.6 °C with
    silica content ranging from 0.5~10 wt.%. The added SiO2
    leads to an increase in Tg
    and Td .The oxygen barrier
    effectiveness of the composites showed significant improvement when compared to pure PES. The 1 wt.% R974
    composite exhibited the lowest OTR, a decrease of 62% when compared to pure PES. These results indicate that
    the PES/SiO2 composites have high potential for flexible polymer substrate applications.
    關聯: Polymers & Polymer Composites
    顯示於類別:[化工與材料工程系(所)] 【化工與材料工程系】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋