勤益科大機構典藏:Item 987654321/5851
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 386401      在线人数 : 286
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5851


    题名: Chaotic eye-based fault forecasting method for wind power systems
    作者: Her-Terng Yau, Meng Hui Wang
    贡献者: 圖書館
    日期: 2015
    上传时间: 2016-10-14 14:08:25 (UTC+8)
    摘要: This study proposes a method for detecting possible faults in wind turbine systems in advance such that the
    operating state of the fan can be changed or appropriate maintenance steps taken. In the proposed method, a chaotic
    synchronisation detection method is used to transform the vibration signal into a chaos error distribution diagram. The
    centroid (chaotic eye) of this diagram is then taken as the characteristic for fault diagnosis purposes. Finally, a grey
    prediction model is used to predict the trajectory of the feature changes, and an extension theory pattern recognition
    technique is applied to diagnose the fault. Notably, the use of the chaotic eye as the fault diagnosis characteristic
    reduces the number of extracted features required, and therefore greatly reduces both the computation time and the
    hardware implementation cost. From the experimental results, it is shown that the fault diagnosis rate of the proposed
    method exceeds 98%. Moreover, it is shown that for oil leaks in the gear accelerator system, the proposed method
    achieves a detection accuracy of 90%, whereas the multilayer neural network method achieves a maximum accuracy of
    just 80%.
    關聯: IET Renewable Power Generation
    显示于类别:[電機工程系(所)] 【電機工程系所】期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Chaotic eye-based fault forecasting method for wind power systems.pdf632KbAdobe PDF1245检视/开启


    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈