勤益科大機構典藏:Item 987654321/5902
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 375832      線上人數 : 546
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5902


    題名: Effect of heat convection on the thermal and structure stress of high-power InGaN light-emitting diode
    作者: Chih-Neng Hsu, Chun-Chieh Huang, Yu-Hsuan Wu
    貢獻者: 圖書館
    關鍵詞: LED
    InGaN
    Convection
    Thermal cooling
    Structure stress
    日期: 2015-02
    上傳時間: 2016-10-18 15:12:35 (UTC+8)
    摘要: In this study, two models are investigated: (1) the convection cooling of high-power indium–gallium–nitride light-emitting diodes (LEDs) and (2) the effects of thermal stress distribution. The first model chip (model A) has power of 1 and 3 W and dimensions of 1 mm × 1 mm × 0.005 mm, whereas the second model chip (model B) has power of 6 and 10 W and dimensions of 1.8 mm × 1.8 mm × 0.005 mm. The results of an analysis of natural convection, forced cooling, and thermal stress are compared with 1, 3, 6, and 10 W thermal specification data. High heat conductivity Al2O3 material used as a printed circuit board (PCB) facilitates the heat conduction and thermal cooling of high-power LEDs and thus increases the strength of the structure. This LED structure model is used in full-scale packaging structures. The wire bonding convection cooling and effect of thermal stress distribution of this packaging design are investigated. We simulate thermal performance and effect of thermal stress distribution of the LEDs using a finite element method with ANSYS software. Heat transfer is coupled with heat conduction, heat convection, and thermal radiation, with the distribution of thermal stress equivalent to that of the von Mises criterion stress. LED is attached to a silicon substrate by wire bonding; the die bond material used is epoxy. LED packaging material is important. If the LED lighting power is fixed, it can increase the convection cooling coefficient, decreases the Tj temperature, and the distribution of structural stress. The Tj temperature is stable when the heat transfer coefficient had a critical or optimal value. Thermal cooling performance and overall structural strength can be improved when the LED is mounted on the Al2O3 PCB material and heat sink. The models are employed accurately to determine the heat transfer effect, structural strength, life span, performance enhancement, and efficiency.
    關聯: Journal of Thermal Analysis and Calorimetry February 2015, Volume 119, Issue 2, pp 1245–1257
    顯示於類別:[冷凍空調與能源系(所)] 【冷凍空調與能源系】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋