English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 372579      線上人數 : 12
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5944


    題名: A Deep Catastrophic Failure Model of Hillslope for Numerical Manifold Method and Multiple Physics Computation
    作者: Hsueh-Chun Lin, Yao-Chiang Kan, Wen-Pei Sung, Yao-Ming Hong
    貢獻者: 圖書館
    關鍵詞: Deep catastrophic landslide
    Multi-physics computation
    Numerical manifold method
    Potential failure
    Risk assessment
    日期: 2015-03
    上傳時間: 2016-10-20 09:58:30 (UTC+8)
    摘要: This study was aimed to create an analytical model for simulating deep catastrophic failure of hillslope (or deep-seated landslide) to help determining assessment criteria of potential risk based on numerical manifold method (NMM) and coupled multi-physics computation (MPC), in which the failure status is simulated by the NMM while the risk factors are studied by the MPC. The simulation delivers the landslide results that are compared with a laboratory test for approval. The proposed model includes a small-scale hillslope designed by two-dimensional geometry for the plane strain problem. Thus, the porous materials are considered for coupling fluid–structure interactions in hydraulic and geotechnical analyses. Meanwhile, discontinuous joints are assumed along the potential failure surfaces within the deep-seated layer to simulate collapse behaviors of hillslope once the risk factors, such as effective stress and friction angle, reach the thresholds. Furthermore, the model is initially setup as laboratory scale for comparing with a hydraulic experiment that practices the failure condition caused by seepage. The simulation hence explorers the criteria of potential failure risks due to variations of slope, friction angle, and groundwater level. This study performs feasibility of the proposed model that provides a reliable procedure based on both simulation and experiment to estimate the potential risks for deep catastrophic landslides. In the future, the study can be expanded for evaluating full-scale landslide in a variety of hillslope properties.
    關聯: Arabian Journal for Science and Engineering, 40(3), 735–746
    顯示於類別:[景觀系(所)] 【景觀系】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋