English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 372978      線上人數 : 407
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5950


    題名: Applying Decision Tree and Neural Network to Raise the Performance of Human Training Quality
    作者: 周永燦、吳益銓、林文燦
    貢獻者: 圖書館
    關鍵詞: back-propagation neural network
    decision tree
    IIP
    K-Means
    TTQS
    日期: 2015-10-31
    上傳時間: 2016-10-20 11:43:07 (UTC+8)
    摘要: 人力資源是組織中最重要的資產。在全球化的競爭趨勢下,人力資源成為公司主要的核心部門,最根本的工作任務就是建立優秀的人力培訓系統以提高訓練品質。台灣訓練品質系統TTQS為協助國內事業單位、訓練機構針對內部人力教育訓練的執行,提供一套完善的教育訓練品質系統,藉由TTQS系統的導入及運作,並依照TTQS制度之PDDRO(Plan、Design、Do、Review、Outcomes)五環程序標準及19項評核指標,評估企業所有人力訓練方案過程及結果之優劣,使執行後的結果與企業績效成為一個系統性的整體規劃,讓人力教育訓練能更符合事業單位的需要。本研究應用資料探勘技術探討人力訓練品質與績效,以2012年TTQS新版評核資料庫為探勘基礎,尋找TTQS之關鍵評核指標項目。首先應用倒傳遞類神經網路評估TTQS資料庫分類之準確率與績效,其訓練樣本與測試樣本預估準確率都高達95%以上。接著比較決策樹演算法(C5.0,CART,CHAID),選擇準確率較高之演算法來探討TTQS關鍵指標,發現C5.0演算法無論在任何資料分割比例下,皆保有較佳之學習準確率,其測試準確率最高達89.41%。K-Means集群分析法用來驗證比較決策樹演算法的結果。經交叉比對K-Means集群分析與決策樹C5.0演算之結果,本研究找出TTQS之重要關鍵評核指標九項。研究結果可幫助台灣之公司企業導入台灣訓練品質系統,掌握TTQS評核關鍵指標內容,強化人力訓練品質與績效。
    關聯: 品質學報 ; 22卷5期, P383 - 403
    顯示於類別:[工業工程與管理系(所)] 【工業工程與管理系所】期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Applying Decision Tree and Neural Network to Raise the Performance of Human Training Quality.pdf1100KbAdobe PDF1337檢視/開啟


    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋