English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 373033      線上人數 : 461
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5952


    題名: Integrating Auto-Associative Neural Networks with Hotelling T2 Control Charts for Wind Turbine Fault Detection.
    作者: Hsu-Hao Yang, Mei-Ling Huang and Shih-Wei Yang
    貢獻者: 圖書館
    關鍵詞: wind energy
    fault detection
    auto-associative neural networks
    hotelling T2 control charts
    日期: 2015
    上傳時間: 2016-10-20 13:11:44 (UTC+8)
    摘要: This paper presents a novel methodology to detect a set of more suitable attributes that may potentially contribute to emerging faults of a wind turbine. The set of attributes were selected from one-year historical data for analysis. The methodology uses the k-means clustering method to process outlier data and verifies the clustering results by comparing quartiles of boxplots, and applies the auto-associative neural networks to implement the residual approach that transforms the data to be approximately normally distributed. Hotelling T2 multivariate quality control charts are constructed for monitoring the turbine’s performance and relative contribution of each attribute is calculated for the data points out of upper limits to determine the set of potential attributes. A case using the historical data and the alarm log is given and illustrates that our methodology has the advantage of detecting a set of susceptible attributes at the same time compared with only one independent attribute is monitored.
    關聯: Energies 2015, 8(10), 12100-12115
    顯示於類別:[工業工程與管理系(所)] 【工業工程與管理系所】期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Integrating Auto-Associative Neural Networks with Hotelling T2 Control Charts for Wind Turbine Fault Detection..pdf1073KbAdobe PDF1267檢視/開啟


    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋