勤益科大機構典藏:Item 987654321/5963
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 374092      在线人数 : 678
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5963


    题名: An Interactively Recurrent Functional Neural Fuzzy Network with Fuzzy Differential Evolution and its Applications
    作者: CHENG-JIAN LIN, CHIH-FENG WU,HSUEH-YI LIN & CHENG-YI YU
    贡献者: 圖書館
    关键词: Control
    differential evolution
    neural fuzzy network
    prediction
    recurrent network
    日期: 2015
    上传时间: 2016-10-20 14:48:35 (UTC+8)
    摘要: In this paper, an interactively recurrent functional neural fuzzy network (IRFNFN) with fuzzy differential evolution (FDE)
    learning method was proposed for solving the control and the prediction problems. The traditional differential evolution
    (DE) method easily gets trapped in a local optimum during the learning process, but the proposed fuzzy differential
    evolution algorithm can overcome this shortcoming. Through the information sharing of nodes in the interactive layer,
    the proposed IRFNFN can effectively reduce the number of required rule nodes and improve the overall performance of
    the network. Finally, the IRFNFN model and associated FDE learning algorithm were applied to the control system of the
    water bath temperature and the forecast of the sunspot number. The experimental results demonstrate the effectiveness
    of the proposed method.
    關聯: Sains Malaysiana 44(12)(2015): 1721–1728
    显示于类别:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    An Interactively Recurrent Functional Neural Fuzzy Network with Fuzzy Differential Evolution and its Applications.pdf992KbAdobe PDF1024检视/开启


    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈