English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 372720      線上人數 : 153
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5965


    題名: A Self-Organizing Recurrent Wavelet Neural Network for Nonlinear Dynamic System Identification
    作者: Cheng-Jian Lin, Chun-Cheng Peng , Cheng-Hung Chen and Hsueh-Yi Lin
    貢獻者: 圖書館
    關鍵詞: Recurrent neural network
    wavelet bases
    identification
    online learning
    backpropagation
    degree measure
    日期: 2015
    上傳時間: 2016-10-20 15:09:59 (UTC+8)
    摘要: : To solve identification of nonlinear dynamic systems, a recurrent wavelet neural network (RWNN) model is proposed in
    this paper. The proposed RWNN model has four-layer structure. Temporal relations embedded in the network by adding some feedback connections representing the memory units in the second layer. An online learning algorithm, which consists of structure learning and parameter learning, is proposed and is able to construct the wavelet neural network dynamically. The structure learning is based on the input partitions to determine the number of wavelet bases, and the parameter learning is based on the supervised gradient descent method to adjust the shape of wavelet functions, feedback weights, and the connection weights. Computer simulations were conducted to illustrate the performance and applicability of the proposed model.
    關聯: Applied Mathematics & Information Sciences, Appl. Math. Inf. Sci. 9, No. 1L, 125-132
    顯示於類別:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    A Self-Organizing Recurrent Wavelet Neural Network for Nonlinear Dynamic System Identification.pdf291KbAdobe PDF1212檢視/開啟


    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋