勤益科大機構典藏:Item 987654321/5968
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 374566      在线人数 : 272
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5968


    题名: Image Haze Removal Using a Hybrid of Fuzzy Inference System and Weighted Estimation
    作者: Wang, Jyun-Guo;Tai, Shen-Chuan;Lin, Cheng-Jian
    贡献者: 圖書館
    日期: 2015
    上传时间: 2016-10-20 15:30:35 (UTC+8)
    摘要: The attenuation of the light transmitted through air can reduce image quality when taking a photograph outdoors, especially in a hazy environment. Hazy images often lack sufficient information for image recognition systems to operate effectively. In order to solve the aforementioned problems, this study proposes a hybrid method combining fuzzy theory with weighted estimation for the removal of haze from images. A transmission map is first created based on fuzzy theory. According to the transmission map, the proposed method automatically finds the possible atmospheric lights and refines the atmospheric lights by mixing these candidates. Weighted estimation is then employed to generate a refined transmission map, which removes the halo artifact from around the sharp edges. Experimental results demonstrate the superiority of the proposed method over existing methods with regard to contrast, color depth, and the elimination of halo artifacts.
    關聯: Journal of Electronic Imaging, 24(3)
    显示于类别:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈