English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 372978      線上人數 : 406
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5970


    題名: A Recurrent Neural Fuzzy Controller Based on Self-Organizing Improved Particle Swarm Optimization for a Magnetic Levitation System
    作者: Lin, Cheng‐Jian
    Chen, Cheng‐Hung
    貢獻者: 圖書館
    關鍵詞: intelligent control
    learning system
    magnetic levitation systems
    neural fuzzy controller
    particle swarm optimization
    日期: 2015-05-01
    上傳時間: 2016-10-20 15:41:12 (UTC+8)
    摘要: This paper proposes a recurrent neural fuzzy controller (RNFC) approach based on a self‐organizing improved particle swarm optimization (SOIPSO) algorithm used for solving control problems. The proposed SOIPSO algorithm can adaptively determine the number of fuzzy rules and automatically adjust the parameters in an RNFC. The proposed learning algorithm consisted of phases of structure and parameter learning. Structure learning adopts several subswarms to constitute the adjustable variables in fuzzy systems, and an elite‐based structure strategy determines the suitable number of fuzzy rules. This paper proposes an improved particle swarm optimization technique, which consists of the modified evolutionary direction operator (MEDO) and traditional PSO techniques. The proposed MEDO method used the EDO and migration operation to improve the search ability of a global solution. Finally, the proposed RNFC approach based on the SOIPSO learning algorithm (RNFC–SOIPSO) was adopted to control a magnetic levitation system. Experimental results demonstrated that the proposed RNFC–SOIPSO model outperforms other models. Copyright © 2014 John Wiley & Sons, Ltd.
    關聯: International Journal of Adaptive Control and Signal Processing, Volume 29, Number 5, 1 May 2015, pp. 563-580(18)
    顯示於類別:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋