勤益科大機構典藏:Item 987654321/5974
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 374183      在线人数 : 769
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5974


    题名: Epileptiform discharges detection from eeg signals using grouped-channel restricted band analysis
    作者: Yang, Sheng-Chih Lan, Sheng-Hsing Chang, Han-Yen Chung, Pau-Choo
    贡献者: 圖書館
    关键词: Interictal epileptiform discharge
    Epileptiform discharge detection
    Electroencephalogram
    Signature analysis
    日期: 2015-04
    上传时间: 2016-10-20 16:01:44 (UTC+8)
    摘要: Epileptiform activities can be detected by scanning the electroencephalogram (EEG) signals of an epileptic patient. Since EEG provides multi-channel signals, it is an opportunity to employ multi-spectrum signal processing techniques for improving the accuracy of signal separation or feature extraction. Although multi-channel signals provide stronger characteristics than a single signal for feature extraction, taking all of the EEG signals into consideration may interfere with the accuracy of epileptiform discharge detection because a part of the signals that do not contain the epileptic activity will be treated as noise. In this paper, we developed a new signature analysis scheme, grouped-channel restricted band analysis (GRBA), for interictal epileptiform discharges (IED) detection from EEG signals. Unlike most traditional epileptic activity detection techniques that inaccurately take single or all EEG signals into consideration, GRBA simultaneously considers three important characteristics of epileptiform discharge waves, i.e. multispectral, finite spread, and specific duration, to detect epileptiform discharges efficiently. A series of experiments were conducted to compare GRBA with traditional feature-classifier methods and the non-grouped approach to evaluate this novel approach by the correct detection rate (Rc) and receiver operating characteristic (ROC) curves. The experimental results showed that our new signature analysis scheme, GRBA, had a superior quality. Moreover, we observed that the area under ROC curves and the Rc for GRBA were as high as 0.9479 and 94.1%, respectively.
    關聯: Biomedical Engineering: Applications, Basis and Communications, 27(2)
    显示于类别:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈