勤益科大機構典藏:Item 987654321/6029
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 387153      在线人数 : 157
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6029


    题名: WSN System Based on Weight Adjust for Machinery Manufacturing Machine Monitoring
    作者: 宋文財
    贡献者: 電機工程(學)系
    日期: 2013-02
    上传时间: 2017-09-26 15:13:20 (UTC+8)
    摘要: This paper improve the original particle swarm optimization (PSO) algorithm in the fixed inertia weight, this study analyzed the value of inertia weight factor in (PSO) algorithm, and proposed a non-linear weights with decreasing strategy to implement the Improvement PSO (IPSO) algorithm and estimate the weighted factor in the data fusion of multi-sensors network. This FLAG Programmable System On Chip (SoC) Developing System 1605A (FLAG-the PSoC-1605A) as an experimental platform, using various types of sensors, combined with ZigBee wireless sensor networks, the TCP / IP network and the GPRS / SMS long-range wireless network will sense the measured data analysis and evaluation, to create a more effective monitoring and observing regional environment to achieve a things and things, and automated exchange of information between persons and things, processing an intelligent network. Finally, the IPSO applied the IOT system in monitoring environment is better than other existing PSO method in computing precise and convergence rate for excellent fusion result.
    關聯: Mechatronics and Applied Mechanics II
    显示于类别:[電機工程系(所)] 【電機工程系所】期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈