勤益科大機構典藏:Item 987654321/6096
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2928/5721 (51%)
Visitors : 376061      Online Users : 773
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncut.edu.tw/handle/987654321/6096


    Title: Tip-contact force control of a single-link flexible arm using feedback and parallel compensation approach
    Authors: 林熊徵
    Contributors: 電子工程(學)系
    Date: 2013-08
    Issue Date: 2017-09-28 09:17:59 (UTC+8)
    Abstract: In this paper, the force control of a constrained one-link flexible arm is investigated using a feedback parallel compensation algorithm based on a linear distributed parameter model with internal damping of Kelvin–Voigt type. Generally, the non-collocation of the joint torque input and the tip contact force output comes along with the non-minimum phase in nature. To overcome this inherent limitation, a new input induced by the measurement of root-bending moment and its derivative, and a virtual contact force output generated by a parallel compensator are defined. Therefore, the transfer function from the new input to the virtual contact force output is proved not only strictly minimum phase but also in a stable condition. A PD controller then improves the performance of the overall closed-loop system. Furthermore, the perfect asymptotic tracking of a desired contact force trajectory with internal stability can be achieved accurately. The exact solutions of the infinite-dimensional system are obtained using the infinite product formulation. The proposed system promises stability robustness to parameter uncertainties, also free of spillover problems. Numerical simulations are provided to verify the effectiveness of the proposed approach.
    Relation: ROBOTICA
    Appears in Collections:[Department of Electronic Engineering] 【電子工程系所】期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in NCUTIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback