English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 373047      線上人數 : 475
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6202


    題名: A hybrid of rough sets and genetic algorithms for solving the 0-1 multidimensional knapsack problem
    作者: 楊旭豪
    貢獻者: 工業工程與(工程)管理系
    日期: 2013-09
    上傳時間: 2017-09-30 13:16:59 (UTC+8)
    摘要: The multidimensional 0-1 knapsack problem (MKP) is a well-known NP-hard combinatorial optimization problem. This paper uses a methodology that integrates a reduct of rough sets (RS) into the crossover operator of a genetic algorithm (GA) to solve the MKP. Two algorithms are presented in this paper; one selects the crossover points either randomly or via the reduct, whereas the other selects the crossover points solely by the reduct. The performance of these two algorithms was compared with a standard GA using test cases from the literature. According to the experimental results, this integration obtains both better quality and more clustered solutions, and could possibly improve the performance if some mechanisms are developed in the algorithm. The results justify the integration and demonstrate an alternative for improving the performance of the GA. © 2013 ISSN 1349-4198. (23 refs)
    關聯: International Journal of Innovative Computing Information and Control
    顯示於類別:[工業工程與管理系(所)] 【工業工程與管理系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋