勤益科大機構典藏:Item 987654321/6206
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 387014      在线人数 : 479
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6206


    题名: the Application of Recurrent Artificial Neural Network in Chiller Energy Analysis Simulationt
    作者: 洪永祥
    贡献者: 工業工程與(工程)管理系
    日期: 2013-03
    上传时间: 2017-09-30 13:26:10 (UTC+8)
    摘要: In recent years, due to the rapid development of high-tech industry, air-conditioning equipment has become an essential facility. However, the power consumption of the air-conditioning equipment is considerably high, accounting for 40-50% of the total building electricity consumption. The air-conditioning equipment includes chiller, pump, fan, cooling tower fan motor; therefore, how to reduce energy consumption and improve energy utilization will be a very important topic. This study used the sensors on the site to collect historical data of load change for analysis and conducted simulation and verification using the artificial neural recurrent network and MATLAB. The frequency of cooling tower fan was set as the output parameter and two groups of modules were established to effectively predict the frequency of cooling tower fan by rainfall to optimize the cooling water fan rotational frequency, in order to reduce power consumption of the cooling tower in different environmental conditions for energy saving. © 2013 Asian Network for Scientific Information. (9 refs)
    關聯: Information Technology Journal
    显示于类别:[工業工程與管理系(所)] 【工業工程與管理系所】期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈