English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 374507      線上人數 : 296
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6467


    題名: An Efficient Symbiotic Particle Swarm Optimization for Recurrent Functional Neural Fuzzy Network Design
    作者: 林正堅
    貢獻者: 資訊工程系
    日期: 2009-12
    上傳時間: 2017-10-13 09:54:40 (UTC+8)
    摘要: In this paper, a recurrent functional neural fuzzy network (RFNFN) with symbiotic particle swarm optimization (SPSO) is proposed for solving identification and prediction problems. The proposed RFNFN model has feedback connections added in the membership function layer that can solve temporal problems. Moreover, an efficient learning algorithm, called symbiotic particle swarm optimization (SPSO), combined symbiotic evolution and modified particle swarm optimization for tuning parameters of the RFNFN. Simulation results show that the converging speed and root mean square error (RMS) of the proposed method has a better performance than those of other methods. (22 refs)
    關聯: International Journal of Fuzzy Systems
    顯示於類別:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋