勤益科大機構典藏:Item 987654321/6595
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2928/5721 (51%)
Visitors : 1314002      Online Users : 407
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncut.edu.tw/handle/987654321/6595


    Title: Experimental and numerical analysis of titanium/aluminum clad metal sheets in sheet hydroforming
    Authors: 洪榮崇
    Contributors: 機械工程(學)系
    Date: 2011-03
    Issue Date: 2017-11-14 09:22:41 (UTC+8)
    Abstract: Clad metals are becoming increasingly emphasized in sheet metal applications. In this research, sheet hydroforming process (SHF) was adopted to improve the formability of Ti/Al clad metal sheets and SUS 304 metal sheets used in computer, communication, and consumer product housings. Both finite element simulation and experimental verification were carried out to investigate the deformation of blanks. Several significant process parameters, such as holding force, friction, counter pressure history, and blank dimensions, were discussed for improving the formability of the two metal sheets. In SHF simulation, a virtual film technique was proposed to realistically approach the hydraulic loading condition during SHF. Finally, the deformed shape and thickness distribution of parts manufactured with SHF were compared with the results of simulation. Good agreements were obtained.
    Relation: nternational Journal of Advanced Manufacturing Technology
    Appears in Collections:[Department of Mechanical Engineering] 【機械工程系】期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in NCUTIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback