勤益科大機構典藏:Item 987654321/6751
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2928/5721 (51%)
Visitors : 376252      Online Users : 962
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncut.edu.tw/handle/987654321/6751


    Title: Jet Impingement and Forced Convection Cooling Experimental Study in Rotating Turbine Blades
    Authors: 許智能
    Contributors: 冷凍空調與能源系
    Date: 2011-06
    Issue Date: 2017-11-29 10:19:14 (UTC+8)
    Abstract: Both jet impingement and forced convection are attractive cooling mechanisms and have been widely used in cooling of gas turbine blades. Convective heat transfer from impinging jets is known to yield high local and area averaged heat transfer coefficients. Impingement jets are of particular interest in the cooling of gas turbine components where advancement relies on the ability to dissipate extremely large heat loads. The current research is concerned with the measurement and comparison of both jet impingement and forced convection heat transfer in the Reynolds number range of 10,000 to 30,000. The present study is aimed at experimentally testing two different setups with forced convection and jet impingement in rotating turbine blades up to 700 rpm. This research also focused on to observe how Coriolis forces and impingement cooling inside the passage in rotating conditions within a cooling passage. Local heat transfer coefficients are obtained for each test section through thermal-couple technique with slip rings. The cross section of the passage is 10 mm × 10 mm without ribs. The surface heating condition has a uniform heat flux enforced. The forced convection cooling effects were studied using serpentine passages with three corner turns under different rotating speeds and different inlet Reynolds numbers. The impingement cooling study uses a straight passage with a single jet hole under different Reynolds numbers of the impingement flow and the cross flow. In summary, the main purpose is to study the rotation effects on both the jet impingement and the serpentine convection cooling types. Our study shows that rotation effects increase the serpentine cooling and, on the other hand, reduce the jet impingement cooling.
    Relation: International Journal of Turbo & Jet-Engines
    Appears in Collections:[Department of Refrigeration & Air Conditioning] 【冷凍空調與能源系】期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in NCUTIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback