勤益科大機構典藏:Item 987654321/6768
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2928/5721 (51%)
Visitors : 386773      Online Users : 249
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncut.edu.tw/handle/987654321/6768


    Title: Extracting performance rules of suppliers in the manufacturing industry: an empirical study
    Authors: 賴建榮
    Contributors: 流通(科技)管理系
    Date: 2011-03
    Issue Date: 2017-12-17
    Abstract: Performance evaluation of suppliers is increasingly recognized as a critical indicator in supply chain cooperation. Traditional performance evaluation methods have the problems of a simple buy/sell relation and in one’s subjective views between manufacturers and suppliers, and they lack objective automatic evaluation processes in the supply chain considered. Statistical techniques used for evaluation rely on the restrictive assumptions of linear separability, multivariate normality, and independence of the predictive variables. Unfortunately, many of the common models of performance evaluation of suppliers violate these assumptions. The study proposes an integrated model by combining K-means clustering, feature selection, and the decision tree method into a single evaluation model to assess the performance of suppliers and simultaneously tackles the above-mentioned shortcomings. The integrated model is illustrated with an empirical case study of a manufacturer for an original design manufacturer (ODM) to demonstrate the model performance. The experimental results indicate that the proposed method outperforms listed methods in terms of accuracy, and three redundant attributes can be eliminated from the empirical case. Furthermore, the extracted rules by the decision tree C4.5 algorithm form an automatic knowledge system for supplier performance evaluation.
    Relation: Journal of Intelligent Manufacturing
    Appears in Collections:[Department of Distribution Management] 【流通管理系所】期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in NCUTIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback