勤益科大機構典藏:Item 987654321/6860
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 375667      在线人数 : 384
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6860


    题名: Effects of SVM Parameter Optimization Based On The Parameter Design of Taguchi Method
    作者: 黃美玲
    贡献者: 工業工程與(工程)管理系
    日期: 2011-06
    上传时间: 2017-12-17 11:34:38 (UTC+8)
    摘要: Support Vector Machines (SVMs) are based on the concept of decision planes that define decision boundaries, and Least Squares Support Vector (LS-SVM) Machine is the reformulation of the principles of SVM. In this study a diagnosis on a BUPA liver disorders dataset, is conducted LS-SVM with the Taguchi method. The BUPA Liver Disorders dataset includes 345 samples with 6 features and 2 class labels. The system approach has two stages. In the first stage, in order to effectively determine the parameters of the kernel function, the Taguchi method is used to obtain better parameter settings. In the second stage, diagnosis of the BUPA liver disorders dataset is conducted using the LS-SVM classifier; the classification accuracy is 95.07%; the AROC is 99.12%. Compared with the results of related research, our proposed system is both effective and reliable.
    關聯: International Journal on Artificial Intelligence Tools
    显示于类别:[工業工程與管理系(所)] 【工業工程與管理系所】期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈