English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 374131      線上人數 : 717
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6869


    題名: Unsupervised Fuzzy C-Means Clustering for Motor Imagery EEG Recognition
    作者: 林基源
    貢獻者: 資訊工程系
    日期: 2011-08
    上傳時間: 2017-12-17 13:06:01 (UTC+8)
    摘要: In this study, an electroencephalogram (EEG) recognition system is proposed on single-trial motor imagery (MI) data. Fuzzy c-means (FCM) clustering is used for the unsupervised recognition of left and right MI data by combining with selected active segments and multiresolution fractal features. Active segment selection is used to detect active segments situated at most discriminable areas in the time-frequency domain. The multiresolution fractal features are then extracted by using modified fractal dimension from wavelet data. Finally, FCM clustering is used as the discriminant of MI features. The FCM clustering is an adaptive approach suitable for the clustering of non-stationary biomedical signals. Compared with several popular supervised classifiers, FCM clustering provides a potential for BCI application. © 2011 ICIC International. (36 refs)
    關聯: International Journal of Innovative Computing, Information and Control
    顯示於類別:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋