勤益科大機構典藏:Item 987654321/6876
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 375866      在线人数 : 580
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6876


    题名: A Self-Adaptive Quantum Radial Basis Function Network for Classification Applications
    作者: 林正堅
    贡献者: 資訊工程系
    日期: 2011-12
    上传时间: 2017-12-17 13:15:38 (UTC+8)
    摘要: In this paper, a self-adaptive quantum radial basis function network ((QRBF- N) is proposed for classification applications. The QRBFN model is with three layers, while the hidden layer contains quantum function neurons ((QFNs), equipped with multilevel activation functions. Each QFN is composed of the sum of sigmoid functions shifted by some specifid quantum intervals. A self-adaptive learning algorithm consisting of the self-clustering algorithm ((SCA) and the backpropagation algorithm is proposed. The proposed SCA method is a fast, one-pass approach for a dynamic estimation of the number of clusters in the given input data space. The backpropagation algorithm is used to tune the adjustable parameters. Simulation results on the three well-known benchmarking classification applications show that the proposed model outperforms to other relative approaches, in term of higher classification accuracies.
    關聯: International Journal of Innovative Computing, Information and Control
    显示于类别:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈