English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 374421      線上人數 : 1005
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6881


    題名: Design of a Recurrent Functional Neural Fuzzy Network Using Modified Differential Evolution
    作者: 林正堅
    貢獻者: 資訊工程系
    日期: 2011-02
    上傳時間: 2017-12-17 13:26:13 (UTC+8)
    摘要: In this paper, a recurrent functional neural fuzzy network (RFNFN) with modified differential evolution (MDE) method is proposed to solve the prediction problems. The proposed RFNFN model adopts a functional link neural network (FLNN) to the consequent part of the fuzzy rules. FLNN uses orthogonal polynomials and linearly independent functions to form a functional expansion. Thus, the consequent part is a nonlinear combination of input variables. This model also adds feedback connections in the membership function layer to memorize past information for solving temporal problems. Moreover, an efficient learning algorithm, called modified differential evolution (MDE), is proposed to speed up the learning curve and to improve the prediction accuracy. Finally, the RFNFN model is applied to prediction problems of the chaotic time series and the forecast of the sunspot number. The simulation results show that the RFNFN model has a super
    關聯: International Journal of Innovative Computing, Information and Control
    顯示於類別:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋