勤益科大機構典藏:Item 987654321/6985
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2928/5721 (51%)
Visitors : 376148      Online Users : 861
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncut.edu.tw/handle/987654321/6985


    Title: Runner Design to Improve Quality of Plastic Optical Lens
    Authors: 蔡國銘
    Contributors: 機械工程(學)系
    Date: 2012-03
    Issue Date: 2017-12-19 09:57:40 (UTC+8)
    Abstract: Although the layout of multicavity molds is a geometrically balanced design, when the melt flows into the runner, the shear-induced partial changes in material properties will result in intracavity imbalance. This study placed a rectangular flow restrictor within the tertiary runner of a precision optical lens mold to create melt turbulence through flow blocking. Due to polymer rheological characteristics, uniform melt temperature distribution in the runner channel could be obtained, making the temperature distribution inside the cavity more uniform, and reducing the thermal residual stress and warpage of injection molded parts. The optimal runner restrictor design is placing 5 mm away from the secondary runner centerline, making both the depth and the width of the block 3 mm. A relatively uniform melt temperature distribution with a maximum temperature difference of 1.1 °C can be achieved. Injection molds were fabricated according to the optimized restrictor design, and experimental verification was performed. The contour accuracy of a lens parallel to injection direction was improved from 10.44 to 5.03 μm. Therefore, this runner restrictor design can be applied to high-precision optical molds due to the ease of machining and the capability of improving the quality of optical lens.
    Relation: International Journal of Advanced Manufacturing Technology
    Appears in Collections:[Department of Mechanical Engineering] 【機械工程系】期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in NCUTIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback