English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 385982      線上人數 : 169
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/7005


    題名: Terminal Sliding Mode Control for Aeroelastic Systems
    作者: 姚賀騰
    貢獻者: 電機工程(學)系
    日期: 2012-09
    上傳時間: 2017-12-19 10:33:04 (UTC+8)
    摘要: An aeroelastic system is a nonlinear system with two freedoms, i.e., the plunge displacement and the pitch angle, in a dynamic system model. A chaos effect or a limit cycle oscillation is presumably attributed to the nonlinear effect of the pitch angle mentioned above or the interaction between the aerodynamic behaviors. It is that a single trailing edge input in an aeroelastic system is employed as a way to suppress the limit cycle oscillation with an exclusive choice between the plunge displacement and the pitch angle for a control law design. Consequently, the remaining inevitably turns into an internal dynamics, whose stability is adversely affected by the flight speed and structure parameters, a problem improved by no means using a singe control input design. Toward this end, this work presents a controller design criterion with multiple input channels for both the leading and training edges to remove the uncertainty effect of internal dynamics, and render more room for the response design of the plunge displacement as well as the pitch angle. Mostly due to external disturbance and unknown uncertainty, there is a deviation between the intended and implemented system performances for a robust control design, a mainstream research issue in the modern control. As a consequence of a sliding mode control utilized here, the limit cycle oscillation suffered in an aeroelastic system is removed effectively by the use of a terminal sliding mode control, and the chattering phenomenon seen in the control signal is hence eliminated by his method. It is seen from simulations that the control system is stably assured to reach the target within a limited time frame with an addition of a saturation function to the control law.
    關聯: Nonlinear Dynamics
    顯示於類別:[電機工程系(所)] 【電機工程系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋