勤益科大機構典藏:Item 987654321/7254
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 373788      在线人数 : 375
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/7254


    题名: Nonlinear System Control Using Functional-Link-Based Neuro-Fuzzy Network Model Embedded with Modified Particle Swarm Optimizer
    作者: 林正堅
    贡献者: 資訊工程系
    日期: 2012-03
    上传时间: 2018-05-24 09:52:56 (UTC+8)
    摘要: This study presents an evolutionary neural fuzzy system (NFS) for nonlinear system control. The proposed NFS model uses functional link neural networks (FLNNs) as the consequent part of the fuzzy rules. This study uses orthogonal polynomials and linearly independent functions in a functional expansion of the functional link neural networks. A learning algorithm, which consists of structure learning and parameter learning, is presented. The structure learning depends on the entropy measure to determine the number of fuzzy rules. The parameter learning, based on the particle swarm optimization (PSO) algorithm, can adjust the shape of the membership function and the corresponding weighting of the FLNN. The distance-based mutation operator, which strongly encourages a global search giving the particles more chance of converging to the global optimum, is introduced. The simulation results have shown the proposed method can improve the searching ability and is very suitable for the nonlinear system control applications. © 2012 TFSA.
    (40 refs)
    關聯: International Journal of Fuzzy Systems
    显示于类别:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈