English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 374421      線上人數 : 1005
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/1894


    題名: 乏晰競爭式學習網路於影像壓縮之應用
    The Application of Fuzzy Competitive Learning'
    作者: 林基源;林灶生
    Lin, Chi-Yuan;Lin, Jzau-Sheng
    貢獻者: 電子工程系
    Department of Electronic Engineering
    關鍵詞: 乏晰群集演算法;神經網路;影像壓縮
    Fuzzy clustering algorithm;Neural network;Image compression
    日期: 2000-12
    上傳時間: 2008-12-01 15:21:53 (UTC+8)
    出版者: 勤益科技大學
    摘要: Vector quantization has been shown to be an effective technique for image compression. In this
    paper, an unsupervised parallel approach called the Fuzzy Competitive Learning Network (FCLN) for
    vector quatization in image compression is proposed. The goal is to apply an unsupervised scheme
    based on a neural network using the fuzzy clustering technique so that on-line learning and parallel
    implementation for codebook design are feasible. In FCLN, the codebook design is conceptually
    considered as a clustering problem. Here, it is a kind of neural network model imposed by the fuzzy
    clustering strategy working toward minimizing an objective function defined as the average distortion
    measure between any two training vectors within the same class. For an image of n training vectors and
    c interesting objects, the proposed FCLN would consist of n input and c output neurons. The
    experimental results show that a promising codebook can be obtained using the fuzzy competitive
    learning neural network based on least squares criteria in comparison with the generalized Lloyd
    algorithm.
    關聯: 勤益學報 No.18 p.61-68
    顯示於類別:[勤益科技大學] 勤益學報

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    乏晰競爭式學習網路於影像壓縮之應用.pdf91KbAdobe PDF2703檢視/開啟


    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋