English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 374034      線上人數 : 621
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/1918


    題名: 大腦磁振影像的自動腫瘤分割技術之研究
    Automatic Tumor Segmentation of Brain in MRI
    作者: 王圳木;楊勝智;劉昭勇
    Wang, Chuin-Mu;Yang, Sheng-Chih;Liu, Zaho-Yong
    貢獻者: 電子工程系
    Department of Electronic Engineering
    關鍵詞: 抑制能量最小化法(CEM);磁振影像(MRI);分類法;大腦影像;腫瘤
    Constrained Energy Minimization(CEM);Magnetic resonance imaging;Classification;Brain images;Tumor
    日期: 1999-11
    上傳時間: 2008-12-05 10:25:40 (UTC+8)
    出版者: 勤益科技大學
    摘要: 在這篇論文中,我們提出了一個新方法,可使腫瘤從腦部的多頻譜磁振影像(Magnetic Resonance,MR)內給分類出來,這些磁振影像的組
    成是由三個磁振參數,質子密度(Proton Density,PD),Tl分量(Weighted)和T2分量影像,經過多頻諳分析所處理出來的。我們提出的這個方法,稱為抑制能量最小化法(Constrained Energy Minimization,CEM),被研發於[12]內,認為在所知道的領域中,把期望的特徵給分類出來,這方法所使用的基礎,就是矩陣運算中的最小化變異數無雜訊響應(Minimum Variance Distortionless Response,MVDR),CEM將多頻譜MR影像視為一個矩陣處理的問題,在這問題中的每一個親察值都代表一個頻譜頻帶(Spectral Band),再使用有限脈衝響應濾波器(Finite Impulse Response,FlR)將輸出必v做最小化處理,使期望的特徵被強制到一個特定的增益。此方法已經由數個實驗所得證,實驗結果頭示出大腦組織正確地被分割為四張影像,腦瘤(Tumor)、灰質(Gray Matter)、白質(White Matter)以及腦脊髓液(Cerebral Spinal Fluid,CSF),這些都象徵了這個方法是非常有用的。另外,對於計算所花的時間而言,實驗結果也顯示出繁雜計算的改進處。
    In this paper, we present a new method to classify tumor in multispectral magnetic resonance (MR) images of the human brain. The MRI's consist of three magnetic resonance parameters proton density, T1-weighted, and T2-weighted images, which are processed with multispectral analysis. The proposed approach, called Constrained Energy Minimization (CEM) was developed in [12] where only the knowledge of the desired signature to be classified as required. It was derived based on the Minimum Variance Distortionless Response (MVDR) in array processing. CEM considers an MR image classification problem as an array-processing problem where each sensor represent one spectral band. It uses a finite impulse response (FIR) filter to minimize the output power while the deslred signature is constrained to a specific gain. The method has been evaluated through several experiments. Results show that the cerebral tissue was segmented accurately into four images, tumor, gray matter, white matter and cerebral spinal fluid indicating the possible usefulness of this method. As far as computing saving is concerned, the experimental results also show computational complexity improvement.
    關聯: 勤益學報 No.17 p.127-136
    顯示於類別:[勤益科技大學] 勤益學報

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Automatic Tumor.pdf2267KbAdobe PDF2893檢視/開啟


    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋