English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 373198      線上人數 : 62
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5851


    題名: Chaotic eye-based fault forecasting method for wind power systems
    作者: Her-Terng Yau, Meng Hui Wang
    貢獻者: 圖書館
    日期: 2015
    上傳時間: 2016-10-14 14:08:25 (UTC+8)
    摘要: This study proposes a method for detecting possible faults in wind turbine systems in advance such that the
    operating state of the fan can be changed or appropriate maintenance steps taken. In the proposed method, a chaotic
    synchronisation detection method is used to transform the vibration signal into a chaos error distribution diagram. The
    centroid (chaotic eye) of this diagram is then taken as the characteristic for fault diagnosis purposes. Finally, a grey
    prediction model is used to predict the trajectory of the feature changes, and an extension theory pattern recognition
    technique is applied to diagnose the fault. Notably, the use of the chaotic eye as the fault diagnosis characteristic
    reduces the number of extracted features required, and therefore greatly reduces both the computation time and the
    hardware implementation cost. From the experimental results, it is shown that the fault diagnosis rate of the proposed
    method exceeds 98%. Moreover, it is shown that for oil leaks in the gear accelerator system, the proposed method
    achieves a detection accuracy of 90%, whereas the multilayer neural network method achieves a maximum accuracy of
    just 80%.
    關聯: IET Renewable Power Generation
    顯示於類別:[電機工程系(所)] 【電機工程系所】期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Chaotic eye-based fault forecasting method for wind power systems.pdf632KbAdobe PDF1238檢視/開啟


    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋