English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 372845      線上人數 : 275
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5963


    題名: An Interactively Recurrent Functional Neural Fuzzy Network with Fuzzy Differential Evolution and its Applications
    作者: CHENG-JIAN LIN, CHIH-FENG WU,HSUEH-YI LIN & CHENG-YI YU
    貢獻者: 圖書館
    關鍵詞: Control
    differential evolution
    neural fuzzy network
    prediction
    recurrent network
    日期: 2015
    上傳時間: 2016-10-20 14:48:35 (UTC+8)
    摘要: In this paper, an interactively recurrent functional neural fuzzy network (IRFNFN) with fuzzy differential evolution (FDE)
    learning method was proposed for solving the control and the prediction problems. The traditional differential evolution
    (DE) method easily gets trapped in a local optimum during the learning process, but the proposed fuzzy differential
    evolution algorithm can overcome this shortcoming. Through the information sharing of nodes in the interactive layer,
    the proposed IRFNFN can effectively reduce the number of required rule nodes and improve the overall performance of
    the network. Finally, the IRFNFN model and associated FDE learning algorithm were applied to the control system of the
    water bath temperature and the forecast of the sunspot number. The experimental results demonstrate the effectiveness
    of the proposed method.
    關聯: Sains Malaysiana 44(12)(2015): 1721–1728
    顯示於類別:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    An Interactively Recurrent Functional Neural Fuzzy Network with Fuzzy Differential Evolution and its Applications.pdf992KbAdobe PDF1024檢視/開啟


    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋