English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 372733      線上人數 : 166
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/5974


    題名: Epileptiform discharges detection from eeg signals using grouped-channel restricted band analysis
    作者: Yang, Sheng-Chih Lan, Sheng-Hsing Chang, Han-Yen Chung, Pau-Choo
    貢獻者: 圖書館
    關鍵詞: Interictal epileptiform discharge
    Epileptiform discharge detection
    Electroencephalogram
    Signature analysis
    日期: 2015-04
    上傳時間: 2016-10-20 16:01:44 (UTC+8)
    摘要: Epileptiform activities can be detected by scanning the electroencephalogram (EEG) signals of an epileptic patient. Since EEG provides multi-channel signals, it is an opportunity to employ multi-spectrum signal processing techniques for improving the accuracy of signal separation or feature extraction. Although multi-channel signals provide stronger characteristics than a single signal for feature extraction, taking all of the EEG signals into consideration may interfere with the accuracy of epileptiform discharge detection because a part of the signals that do not contain the epileptic activity will be treated as noise. In this paper, we developed a new signature analysis scheme, grouped-channel restricted band analysis (GRBA), for interictal epileptiform discharges (IED) detection from EEG signals. Unlike most traditional epileptic activity detection techniques that inaccurately take single or all EEG signals into consideration, GRBA simultaneously considers three important characteristics of epileptiform discharge waves, i.e. multispectral, finite spread, and specific duration, to detect epileptiform discharges efficiently. A series of experiments were conducted to compare GRBA with traditional feature-classifier methods and the non-grouped approach to evaluate this novel approach by the correct detection rate (Rc) and receiver operating characteristic (ROC) curves. The experimental results showed that our new signature analysis scheme, GRBA, had a superior quality. Moreover, we observed that the area under ROC curves and the Rc for GRBA were as high as 0.9479 and 94.1%, respectively.
    關聯: Biomedical Engineering: Applications, Basis and Communications, 27(2)
    顯示於類別:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋