English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 374710      線上人數 : 304
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6029


    題名: WSN System Based on Weight Adjust for Machinery Manufacturing Machine Monitoring
    作者: 宋文財
    貢獻者: 電機工程(學)系
    日期: 2013-02
    上傳時間: 2017-09-26 15:13:20 (UTC+8)
    摘要: This paper improve the original particle swarm optimization (PSO) algorithm in the fixed inertia weight, this study analyzed the value of inertia weight factor in (PSO) algorithm, and proposed a non-linear weights with decreasing strategy to implement the Improvement PSO (IPSO) algorithm and estimate the weighted factor in the data fusion of multi-sensors network. This FLAG Programmable System On Chip (SoC) Developing System 1605A (FLAG-the PSoC-1605A) as an experimental platform, using various types of sensors, combined with ZigBee wireless sensor networks, the TCP / IP network and the GPRS / SMS long-range wireless network will sense the measured data analysis and evaluation, to create a more effective monitoring and observing regional environment to achieve a things and things, and automated exchange of information between persons and things, processing an intelligent network. Finally, the IPSO applied the IOT system in monitoring environment is better than other existing PSO method in computing precise and convergence rate for excellent fusion result.
    關聯: Mechatronics and Applied Mechanics II
    顯示於類別:[電機工程系(所)] 【電機工程系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋