English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 373923      線上人數 : 510
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6267


    題名: Analysis of the machining stability of a milling machine considering the effect of machine frame structure and spindle bearings: experimental and finite element approaches
    作者: 洪瑞斌
    貢獻者: 機械工程(學)系
    日期: 2013-10
    上傳時間: 2017-10-02 10:47:51 (UTC+8)
    摘要: Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high-speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process of spindle tool. Prediction of the dynamic behavior at spindle tool tip is therefore of importance for assessing the machining stability of a machine tool at design stage. This study was aimed to evaluate the machining stability of a vertical milling system under the interactive influence of the spindle unit and the machine frame structure. To this end, a realistic finite element model of a vertical milling tool was generated by incorporating the spindle-bearing model into the head stock mounted on machine frame. The influences of the dynamics of spindle-bearing system and the machine frame structure were investigated respectively. Current results show that the machine tool spindle system demonstrates different dynamic behaviors at different frequency ranges, which are also characterized as structural modes and spindle modes, respectively. In particular, the maximum compliance of spindle tool tip was found to occur at the bending vibrations of spindle shaft and vary with the preload amount of spindle bearing. The machining stabilities were predicted to different extent, depending on the exciting modes which could be related to the influences of machine frame and spindle unit.
    關聯: International Journal of Advanced Manufacturing Technology
    顯示於類別:[機械工程系(所)] 【機械工程系】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋