勤益科大機構典藏:Item 987654321/6739
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2928/5721 (51%)
Visitors : 386461      Online Users : 344
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncut.edu.tw/handle/987654321/6739


    Title: An Analytical Study on Influence of Movement Conditions of Ultrasonic Atomizing Nozzle on Performance of Spray Coating
    Authors: 吳友烈
    Contributors: 冷凍空調與能源系
    Date: 2011-03
    Issue Date: 2017-11-29 09:49:12 (UTC+8)
    Abstract: This study aimed to make the slurry droplets atomized by the ultrasonic atomization spray coating diversion system fall on the substrate surface of hot plate stably, instead of rebound or spill due to overly high pressure or speed that causes material waste and excessive or non-uniform spray coating. The lateral movement distance of the nozzle influences the uniformity of film thickness distribution, while the lateral movement distance influences the film uniformity and the spray coating efficiency; these two are important parameters to the efficiency of ultrasonic spraying equipments. Therefore, this study conducted a simulation analysis on the atomization flow field of ultrasonic atomization diversion systems, where the distribution of atomization flow field was analyzed at different lateral movement distances of the nozzle. By evaluating the performance of thin film coating, this study attempted to find out the optimal lateral movement distance of ultrasonic precision spray coating. The simulation analysis results were tested on a real machine for validation in order to identify the reliability of the simulation. The simulation result showed that the central part of the film in the position sprayed was thicker; therefore, the nozzle moved 1 cm horizontally at 0.1m/s to thicken the repeatedly sprayed area to improve the overall uniformity of the panel. The study analyzed the spray coating thicknesses according to 16 monitoring points in the repeatedly sprayed area on the panel. According to the thicknesses of the monitoring point positions, when the area that had been sprayed once was sprayed again by the nozzle moving 1cm laterally, the uniformity of overall film on the overall panel was improved significantly.
    Relation: Applied Mechanics and Materials
    Appears in Collections:[Department of Refrigeration & Air Conditioning] 【冷凍空調與能源系】期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in NCUTIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback