勤益科大機構典藏:Item 987654321/6842
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 376220      在线人数 : 931
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6842


    题名: Solving the 0/1 knapsack problem using rough sets and genetic algorithms
    作者: 楊旭豪
    贡献者: 工業工程與(工程)管理系
    日期: 2011-07
    上传时间: 2017-12-17 11:04:33 (UTC+8)
    摘要: This article proposes a methodology that introduces attribute reduction of rough sets into crossover of genetic algorithms (GAs), and then uses the methodology to develop two algorithms. The first algorithm selects the crossover points, either by attribute reduction or randomly; the second selects the crossover points solely by attribute reduction, with no crossover otherwise. We test the methodology on the solving of the 0/1 knapsack problem, due to the problem's NP-hard complexity, and we compare the experiment results to those of typical GAs. According to the results, the introduction of attribute reduction increases the mean and decreases the standard deviation of the final solutions, especially in the presence of tighter capacity, i.e. attribution reduction leads to better solution quality and more tightly clustered solutions. Moreover, the mean number of iterations required to terminate the algorithm and that required to reach maximal profits are significantly reduced.
    關聯: Journal of the Chinese Institute of Industrial Engineers
    显示于类别:[工業工程與管理系(所)] 【工業工程與管理系所】期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈