勤益科大機構典藏:Item 987654321/6842
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 387354      線上人數 : 108
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6842


    題名: Solving the 0/1 knapsack problem using rough sets and genetic algorithms
    作者: 楊旭豪
    貢獻者: 工業工程與(工程)管理系
    日期: 2011-07
    上傳時間: 2017-12-17 11:04:33 (UTC+8)
    摘要: This article proposes a methodology that introduces attribute reduction of rough sets into crossover of genetic algorithms (GAs), and then uses the methodology to develop two algorithms. The first algorithm selects the crossover points, either by attribute reduction or randomly; the second selects the crossover points solely by attribute reduction, with no crossover otherwise. We test the methodology on the solving of the 0/1 knapsack problem, due to the problem's NP-hard complexity, and we compare the experiment results to those of typical GAs. According to the results, the introduction of attribute reduction increases the mean and decreases the standard deviation of the final solutions, especially in the presence of tighter capacity, i.e. attribution reduction leads to better solution quality and more tightly clustered solutions. Moreover, the mean number of iterations required to terminate the algorithm and that required to reach maximal profits are significantly reduced.
    關聯: Journal of the Chinese Institute of Industrial Engineers
    顯示於類別:[工業工程與管理系(所)] 【工業工程與管理系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋