English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 373936      線上人數 : 523
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6860


    題名: Effects of SVM Parameter Optimization Based On The Parameter Design of Taguchi Method
    作者: 黃美玲
    貢獻者: 工業工程與(工程)管理系
    日期: 2011-06
    上傳時間: 2017-12-17 11:34:38 (UTC+8)
    摘要: Support Vector Machines (SVMs) are based on the concept of decision planes that define decision boundaries, and Least Squares Support Vector (LS-SVM) Machine is the reformulation of the principles of SVM. In this study a diagnosis on a BUPA liver disorders dataset, is conducted LS-SVM with the Taguchi method. The BUPA Liver Disorders dataset includes 345 samples with 6 features and 2 class labels. The system approach has two stages. In the first stage, in order to effectively determine the parameters of the kernel function, the Taguchi method is used to obtain better parameter settings. In the second stage, diagnosis of the BUPA liver disorders dataset is conducted using the LS-SVM classifier; the classification accuracy is 95.07%; the AROC is 99.12%. Compared with the results of related research, our proposed system is both effective and reliable.
    關聯: International Journal on Artificial Intelligence Tools
    顯示於類別:[工業工程與管理系(所)] 【工業工程與管理系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋