English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 373593      線上人數 : 179
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/6876


    題名: A Self-Adaptive Quantum Radial Basis Function Network for Classification Applications
    作者: 林正堅
    貢獻者: 資訊工程系
    日期: 2011-12
    上傳時間: 2017-12-17 13:15:38 (UTC+8)
    摘要: In this paper, a self-adaptive quantum radial basis function network ((QRBF- N) is proposed for classification applications. The QRBFN model is with three layers, while the hidden layer contains quantum function neurons ((QFNs), equipped with multilevel activation functions. Each QFN is composed of the sum of sigmoid functions shifted by some specifid quantum intervals. A self-adaptive learning algorithm consisting of the self-clustering algorithm ((SCA) and the backpropagation algorithm is proposed. The proposed SCA method is a fast, one-pass approach for a dynamic estimation of the number of clusters in the given input data space. The backpropagation algorithm is used to tune the adjustable parameters. Simulation results on the three well-known benchmarking classification applications show that the proposed model outperforms to other relative approaches, in term of higher classification accuracies.
    關聯: International Journal of Innovative Computing, Information and Control
    顯示於類別:[資訊工程系(所)] 【資訊工程系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋